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The Rigetti Forest Software Development Kit includes pyQuil, the Rigetti Quil Compiler (quilc), and the Quantum
Virtual Machine (qvm).

Longtime users of Rigetti Forest will notice a few changes. First, the SDK now contains a downloadable compiler
and a QVM. Second, the SDK contains pyQuil 2.0, with significant updates to previous versions. As a result, programs
written using previous versions of the Forest toolkit will need to be updated to pyQuil 2.0 to be compatible with the
QVM or compiler.

After installing the SDK and updating pyQuil in Installation and Getting Started, see Forest 2.0: Migration Guide to
get caught up on what’s new!

Quantum Cloud Services will provide users with a dedicated Quantum Machine Image, which will come prepackaged
with the Forest SDK. We’re releasing a Preview to the Forest SDK now, so current users can begin migrating code
(and share feedback with us early and often!). Longtime Forest users should start with the Migration Guide which
outlines key changes in this SDK Preview release.

If you’re new to Forest, we hope this documentation will provide everything you need to get up and running with the
toolkit. Once you’ve oriented yourself here, proceed to the section Installation and Getting Started to get started. If
you’re new to quantum computing, you also go to our section on Introduction to Quantum Computing. There, you’ll
learn the basic concepts needed to write quantum software. You can also work through an introduction to quantum
computing in a jupyter notebook; launch the notebook from the source folder in pyquil’s docs:

cd pyquil/docs/source
jupyter notebook intro_to_qc.ipynb

A few terms to orient you as you get started with Forest:

1. pyQuil: An open source Python library to help you write and run quantum programs. The source is hosted on
github.

2. Quil: The Quantum Instruction Language standard. Instructions written in Quil can be executed on any imple-
mentation of a quantum abstract machine, such as the quantum virtual machine (QVM), or on a real quantum
processing unit (QPU). More details regarding Quil can be found in the whitepaper, A Practical Quantum In-
struction Set Architecture.

3. QVM: The Quantum Virtual Machine is an implementation of a quantum abstract machine on classical hard-
ware. The QVM lets you use a regular computer to simulate a small quantum computer and execute Quil
programs.

4. QPU: Quantum processing unit. This refers to the physical hardware chip which we run quantum programs on.

5. Quil Compiler: The compiler, quilc, compiles Quil written for one quantum abstract machine (QAM) to
another. Our compiler will take arbitrary Quil and compile it for the given QAM, according to its supported
instruction set architecture.

6. Forest SDK: Our software development kit, optimized for near-term quantum computers that operate as co-
processors, working in concert with traditional processors to run hybrid quantum-classical algorithms. For
references on problems addressable with near-term quantum computers, see Quantum Computing in the NISQ
era and beyond.

Our flagship product Quantum Cloud Services offers users an on-premise, dedicated access point to our quantum
computers. This access point is a fully-configured VM, which we call a Quantum Machine Image. A QMI is bundled
with the same downloadable SDK mentioned above, and a command line interface (CLI), which is used for scheduling
compute time on our quantum computers. To sign up for our waitlist, please click the link above. If you’d like to access
to our quantum computers for research, please email support@rigetti.com.

Note: To join our user community, connect to the Rigetti Slack workspace at https://rigetti-forest.slack.com.

Contents 1
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CHAPTER 1

Contents

1.1 Installation and Getting Started

To make full use of the Rigetti Forest SDK, you will need pyQuil, the QVM, and the Quil Compiler. On this page,
we will take you through the process of installing all three of these. We also step you through running a basic pyQuil
program.

Note: If you’re running from a Quantum Machine Image, installation has been completed for you. Continue to
Getting Started.

1.1.1 Upgrading or Installing pyQuil

PyQuil 2.0 is our library for generating and executing Quil programs on the Rigetti Forest platform.

Before you install, we recommend that you activate a Python 3.6+ virtual environment. Then, install pyQuil using pip:

pip install --pre pyquil

For those of you that already have pyQuil, you can upgrade with:

pip install --upgrade --pre pyquil

If you would like to stay up to date with the latest changes and bug fixes, you can also opt to install pyQuil from the
source here.

Note: PyQuil requires Python 3.6 or later.

3
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1.1.2 Downloading the QVM and Compiler

The Forest 2.0 Downloadable SDK Preview currently contains:

• The Rigetti Quantum Virtual Machine (qvm) which allows high-performance simulation of Quil programs

• The Rigetti Quil Compiler (quilc) which allows compilation and optimization of Quil programs to native gate
sets

The QVM and the compiler are packed as program binaries that are accessed through the command line. Both of them
provide support for direct command-line interaction, as well as a server mode. The server mode is required for use
with pyQuil.

Request the Forest SDK here. You’ll receive an email right away with the download links for macOS, Linux (.deb),
Linux (.rpm), and Linux (bare-bones).

All installation mechanisms, except the bare-bones package, require administrative privileges to install. To use the
QVM and Quil Compiler from the bare-bones package, you will have to install the prerequisite dependencies on your
own.

Installing on macOS

Mount the file forest-sdk.dmg by double clicking on it in your email. From there, open forest-sdk.pkg by
double-clicking on it. Follow the installation instructions.

Upon successful installation, one should be able to open a new terminal window and run the following two commands:

qvm --version
quilc --version

To uninstall, delete the following files:

/usr/local/bin/qvm
/usr/local/bin/quilc
/usr/local/share/man/man1/qvm.1
/usr/local/share/man/man1/quilc.1

Installing the QVM and Compiler on Linux (deb)

Download the Debian distribution by clicking on the link in your email. Unpack the tarball and change to that directory
by doing:

tar -xf forest-sdk-linux-deb.tar.bz2
cd forest-sdk-2.0rc2-linux-deb

From here, run the following command:

sudo ./forest-sdk-2.0rc2-linux-deb.run

Upon successful installation, one should be able to run the following two commands:

qvm --version
quilc --version

To uninstall, type:

4 Chapter 1. Contents
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sudo apt remove forest-sdk

Installing the QVM and Compiler on Linux (rpm)

Download the RPM-based distribution by clicking on the link in your email. Unpack the tarball and change to that
directory by doing:

tar -xf forest-sdk-linux-rpm.tar.bz2
cd forest-sdk-2.0rc2-linux-rpm

From here, run the following command:

sudo ./forest-sdk-2.0rc2-linux-rpm.run

Upon successful installation, one should be able to run the following two commands:

qvm --version
quilc --version

To uninstall, type:

sudo rpm -e forest-sdk
# or
sudo yum uninstall forest-sdk

Installing the QVM and Compiler on Linux (bare-bones)

The bare-bones installation only contains the executable binaries and manual pages, and doesn’t contain any of the
requisite dynamic libraries. As such, installation doesn’t require administrative or sudo privileges.

First, unpack the tarball and change to that directory by doing:

tar -xf forest-sdk-linux-barebones.tar.bz2
cd forest-sdk-2.0rc2-linux-barebones

From here, run the following command:

./forest-sdk-2.0rc2-linux-barebones.run

Upon successful installation, this will have created a new directory rigetti in your home directory that contains all
of the binary and documentation artifacts.

This method of installation requires one, through whatever means, to install shared libraries for BLAS, LAPACK, and
libffi. On a Debian-derivative system, this could be accomplished with

sudo apt-get install liblapack-dev libblas-dev libffi-dev

To uninstall, remove the directory ~/rigetti.

1.1.3 Getting Started

To get started using the SDK, you can either interact with the QVM and the compiler directly from the command line,
or you can run them in server mode and use them with pyQuil. In this section, we’re going to explain how to do the
latter.

1.1. Installation and Getting Started 5
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For more information about directly interacting with the QVM and the compiler, refer to their respective manual pages.
After installation, you can read the manual pages by opening a new terminal window and typing man qvm (for the
QVM) or man quilc (for the compiler). Quit out of the manual page by typing q.

Setting Up Server Mode for PyQuil

Note: This set up is only necessary to run pyQuil locally. If you’re running in a QMI, this has already been done for
you.

It’s easy to start up local servers for the QVM and quilc on your laptop. You should have two terminal windows open
to run in the background. We recommend using a resource such as tmux for running and managing multiple programs
in one terminal.

### CONSOLE 1
$ qvm -S

Welcome to the Rigetti QVM
(Configured with 10240 MiB of workspace and 8 workers.)
[2018-09-20 15:39:50] Starting server on port 5000.

### CONSOLE 2
$ quilc -S

Welcome to the Rigetti Quil Compiler
[2018-09-19 11:22:37] Starting server: 0.0.0.0 : 6000.

That’s it! You’re all set up to run pyQuil locally. Your programs will make requests to these server endpoints to
compile your Quil programs to native Quil, and to simulate those programs on the QVM.

Run Your First Program

Now that our local endpoints are up and running, we can start running pyQuil programs! We will run a simple program
on the Quantum Virtual Machine (QVM).

The program we will create prepares a fully entangled state between two qubits, called a Bell State. This state is in an
equal superposition between |00 and |11, meaning that it is equally likely that a measurement will result in measuring
both qubits in the ground state or both qubits in the excited state. For more details about the physics behind these
concepts, see Introduction to Quantum Computing.

To begin, start up python however you like. You can open a jupyter notebook (type jupyter notebook in your
terminal), open an interactive python notebook in your terminal (with ipython3), or simply launch python in your
terminal (type python3). Recall that you need Python 3.6+ to use pyQuil.

Import a few things from pyQuil:

from pyquil import Program, get_qc
from pyquil.gates import *

The Program object allows us to build up a Quil program. get-qc connects us to a QuantumComputer object,
which specifies what our program should run on (see: The Quantum Virtual Machine (QVM)). We’ve also imported
all (*) gates from the pyquil.gates module, which allows us to add operations to our program (Programs and
Gates).

Next, let’s construct our Bell State.

6 Chapter 1. Contents
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# construct a Bell State program
p = Program(H(0), CNOT(0, 1))

We’ve accomplished this by driving qubit 0 into a superposition state (that’s what the “H” gate does), and then creating
an entangled state between qubits 0 and 1 (that’s what the “CNOT” gate does). Finally, we’ll want to run our program:

# run the program on a QVM
qc = get_qc('9q-square-qvm')
result = qc.run_and_measure(p, trials=10)
print(result[0])
print(result[1])

Compare the two arrays of measurement results. The results will be correlated between the qubits and random from
shot to shot.

The qc is a simulated quantum computer. By specifying we want to .run_and_measure, we’ve told our QVM to
run the program specified above, collapse the state with a measurement, and return the results to us. trials refers
to the number of times we run the whole program.

The call to run_and_measure will make a request to the two servers we started up in the previous section: first,
to the quilc server instance to compile the Quil program into native Quil, and then to the qvm server instance to
simulate and return measurement results of the program 10 times. If you open up the terminal windows where your
servers are running, you should see output printed to the console regarding the requests you just made.

In the following sections, we’ll cover gates, program construction & execution, and go into detail about our Quantum
Virtual Machine, our QPUs, noise models and more. If you’ve used pyQuil before, continue on to our Forest 2.0:
Migration Guide. Once you’re set with that, jump to Programs and Gates to continue.

1.2 Forest 2.0: Migration Guide

The goals of this guide are to cover changes to the Forest SDK (containing pyquil 2.0, new Quil, Quil Compiler, and
QVM), and to go through an example of migrating a VQE program from Forest 1.3 (pyQuil 1.9, Quil 1.0) to be able
to run on the new Forest SDK.

Note: For installation & setup, follow the download instructions in the section Installation and Getting Started at the
top of the page.

1.2.1 What’s changed

With the new Forest SDK, users will be able to run pyQuil programs on a downloadable QVM and Quil Compiler!

In the following section, we’ll cover the main changes to pyQuil, Quil, the Quil Compiler, and the QVM.

1.2.2 Overview of Updates to Quil and pyQuil

The primary differences in the programming language Quil 1.0 (as appearing in pyQuil 1.3) and Quil 2 (as appearing
in 2.0) amount to an enhanced memory model. Whereas the classical memory model in Quil 1.0 amounted to an flat
bit array of indefinite size, the memory model in Quil 2 is segmented into typed, sized, named regions.

In terms of compatibility with Quil 1.0, this primarily changes how MEASURE instructions are formulated, since their
classical address targets must be modified to fit the new framework. In terms of new functionality, this allows angle
values to be read in from classical memory.

1.2. Forest 2.0: Migration Guide 7
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Quil 2 also introduces easier ways to manipulate gates by using gate modifiers. Two gate modifiers are supported
currently, DAGGER and CONTROLLED.

DAGGER can be written before a gate to refer to its inverse. For instance

DAGGER RX(pi/3) 0

would have the same effect as

RX(-pi/3) 0

DAGGER can be applied to any gate, but also circuits defined with DEFCIRCUIT. This allows for easy reversal of
unitary circuits:

DEFCIRCUIT BELL:
H 0
CNOT 0 1

# construct a Bell state
BELL
# disentangle, bringing us back to identity
DAGGER BELL

1.2.3 Parametric programs

The main benefit for users of declared memory regions in Quil is that angle values for parametric gates can be loaded
at execution time on the QPU. Consider the following simple QAOA instance:

DECLARE ro BIT[2]
DECLARE beta REAL
DECLARE gamma REAL

H 0
RZ(beta) 0
H 0
H 1
RZ(beta) 1
H 1

CNOT 0 1
RZ(gamma) 1
CNOT 0 1

MEASURE 0 ro[0]
MEASURE 1 ro[1]

To generate a “landscape” plot as beta and gamma range, it was previously required to generate a different program
for each possible pair of values, substitute that pair in, send it to the compiler, and send the resulting compiled program
to the QPU for execution (and hence generate the expectation values). With Quil 2, this exact program can be sent to
the compiler, which returns a nativized Quil program that still has parametric gates with parameters referencing the
classical memory regions beta and gamma. This program can then be loaded onto the QPU for repeated execution
with different values of beta and gamma, without recompilation in between.

8 Chapter 1. Contents
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1.2.4 Details of updates to Quil

Classical memory regions must be explicitly requested and named by a Quil program using DECLARE directive. A
generic DECLARE directive has the following syntax:

DECLARE region-name type([count])? (SHARING parent-region-name (OFFSET
(offset-count offset-type)+))?

The non-keyword items have the following allowable values:

• region-name: any non-keyword formal name.

• type: one of REAL, BIT, OCTET, or INTEGER

• parent-region-name: any non-keyword formal name previously used as region-name in a different
DECLARE statement.

• offset-count: a nonnegative integer.

• offset-type: the same allowable values as type.

Here are some examples:

DECLARE beta REAL[32]
DECLARE ro BIT[128]
DECLARE beta-bits BIT[1436] SHARING beta
DECLARE fourth-bit-in-beta1 BIT SHARING beta OFFSET 1 REAL 4 BIT

In order, the intention of these DECLARE statements is:

• Allocate an array called beta of length 32, each entry of which is a REAL number.

• Allocate an array called ro of length 128, each entry of which is a BIT.

• Name an array called beta-bits, which is an overlay onto the existing array beta, so that the bit represen-
tations of elements of beta can be directly examined and manipulated.

• Name a single BIT called fourth-bit-in-beta1 which overlays the fourth bit of the bit representation of
the REAL value beta[1].

1.2.5 Backwards compatibility

Quil 1.0 is not compatible with Quil 2 in the following ways:

• The unnamed memory references [n] and [n-m] have no direct equivalent in Quil 2 and must be replaced by
named memory references. (This primarily affects MEASURE instructions.)

• The classical memory manipulation instructions have been modified: the operands of AND have been reversed
(so that in Quil 2, the left operand is the target address) and OR has been replaced by IOR and its operands
reversed (so that, again, in Quil 2 the left operand is the target address).

In all other instances, Quil 1.0 will operate identically with Quil 2.

When confronted with program text conforming to Quil 1.0, pyQuil 2.0 will automatically rewrite MEASURE q [n]
to MEASURE q ro[n] and insert a DECLARE statement which allocates a BIT-array of the appropriate size named
ro.

1.2.6 Details of pyQuil and Forest updates

Updates to Forest
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• In Forest 1.3, job submission to the QPU was done from your workstation and the ability was gated by on user
ID. In Forest 2.0, job submission to the QPU must be done from your remote virtual machine, called a QMI
(Quantum Machine Image).

• In Forest 1.3, user data persisted indefinitely in cloud storage and could be accessed using the assigned job ID.
In Forest 2.0, user data is stored only transiently, and it is the user’s responsibility to handle long-term data
storage on their QMI.

Updates to pyQuil

• In pyQuil 1.9, API calls were organized by endpoint (e.g., all simulation calls were passed to a
QVMConnection object). In pyQuil 2.0, API calls are organized by type (e.g., run calls are sent to a
QuantumComputer but wavefunction calls are sent to a WavefunctionSimulator).

• In pyQuil 1.9, quantum program evaluation was asynchronous on the QPU and a mix of synchronuous or
asynchronous on the QVM. In pyQuil 2.0, all quantum program evaluation is synchronous.

• In pyQuil 1.9, each quantum program execution call started from scratch. In pyQuil 2.0, compiled program
objects can be reused.

1.2.7 Backwards compatibility and migration

PyQuil 2.0 is not backwards compatible with pyQuil 1.9. However, the new API objects available in pyQuil 2.0 have
compatibility methods that make migration to pyQuil 2.0 easier.

Note: Users writing new programs from scratch are encouraged to use the bare pyQuil 2.0 programming model over
the compatibility methods. It is not possible to use the fanciest new features of Forest 2.0 (e.g., parametric execution
of parametric programs) from within the compatibility model.

Whereas pyQuil 1.9 organized API calls around “connection objects” (viz., CompilerConnection,
QPUConnection, and QVMConnection), pyQuil 2.0 organizes API calls around function, so that QVM- and
QPU-based objects can be more easily swapped. These API objects fall into two groups:

• QuantumComputer: This wrapper object houses the typical ingredients for execution of a hybrid classical-
quantum algorithm: an interface to a compiler, an interface to a quantum computational device, and some
optional wrapper routines. QuantumComputer objects themselves can be manually initialized with these
ingredients, or they can be requested by name from the Forest 2.0 service, which will populate these subfields
with the appropriate objects for execution on a particular quantum device, real or simulated.

• AbstractCompiler: An interface to a compiler service. Compilers are responsible for two tasks: converting
arbitrary Quil to “native” (or “device-specific”) Quil, and converting native Quil to control system binaries.

• QAM: An interface to a quantum computational device. This can be populated by a connection to an actual QPU,
or it can be populated by a connection to a QVM (Quantum Virtual Machine).

• Wrapper routines: Execution of programs in pyQuil 1.9 was typically done with a single API call (e.g., .
run()). QuantumComputer exposes a near-identical interface for single runs of quantum programs, which
wraps and hides the more low-level pyQuil 2.0 infrastructure.

• WavefunctionSimulator: This wrapper object houses the typical ingredients used for the debug process
of wavefunction inspection. This is inherently not a procedure natively available on a quantum computational
device, and so this wrapper either calls out to a QVM or functions as a repeated sampling wrapper from a
physical quantum computational device.
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Example: Computing the bond energy of molecular hydrogen, pyQuil 1.9 vs 2.0

By way of example, let’s consider the following pyQuil 1.9 program, which computes the natural bond distance in
molecular hydrogen using a VQE-type algorithm:

from pyquil.api import QVMConnection
from pyquil.quil import Program

def setup_forest_objects():
qvm = QVMConnection()
return qvm

def build_wf_ansatz_prep(theta):
program = Program(f"""

# set up initial state
X 0
X 1

# build the exponentiated operator
RX(pi/2) 0
H 1
H 2
H 3

CNOT 0 1
CNOT 1 2
CNOT 2 3
RZ({theta}) 3
CNOT 2 3
CNOT 1 2
CNOT 0 1

RX(-pi/2) 0
H 1
H 2
H 3

# measure out the results
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]
MEASURE 3 [3]""")

return program

# some constants
bond_step, bond_min, bond_max = 0.05, 0, 200
angle_step, angle_min, angle_max = 0.1, 0, 63
convolution_coefficients = [0.1698845197777728, 0.16988451977777283, -0.
→˓2188630663199042,

-0.2188630663199042]
shots = 1000

# set up the Forest object
qvm = setup_forest_objects()

(continues on next page)
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(continued from previous page)

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

# set up the Program object, each time we have a new parameter
program = build_wf_ansatz_prep(angle_min + offset * angle_step)
bitstrings = qvm.run(program, indices, trials=shots)

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

# compute minimum energy as a function of bond length
min_energies = list(range(bond_min, bond_max))
for bond_length in min_energies:

energies = []
for offset in range(angle_min, angle_max):

energy = 0
for j in range(4):

energy += occupations[offset][j] * convolution_coefficients[j]
energies.append(energy)

min_energies[bond_length] = min(energies)

min_index = min_energies.index(min(min_energies))
min_energy, relaxed_length = min_energies[min_index], min_index * bond_step

In order to port this code to pyQuil 2.0, we need change only one thing: the part referencing QVMConnection should
be replaced by an equivalent part referencing a QuantumComputer connected to a QVM. Specifically, the following
snippet

from pyquil.api import QVMConnection

def setup_forest_objects():
qvm = QVMConnection()
return qvm

can be changed to

from pyquil.api import get_qc

def setup_forest_objects():
qc = get_qc("9q-square-qvm")
return qc

and the references to qvm in the main body are changed to qc instead. Since the QuantumComputer object
also exposes a run routine and pyQuil itself automatically rewrites 1.9-style MEASURE instructions into 2.0-style
instructions, this is all we need to do.

If we are willing to be more intrusive, we can also take advantage of pyQuil 2.0’s classical memory and parametric
programs. The first piece to change is the Quil program itself: we remove the argument theta from the Python
function build_wf_ansatz_prep, with the intention of letting the QPU fill it in later. In turn, we modify the
Quil program itself to have a REAL memory parameter named theta. We also declare a few BITs for our MEASURE
instructions to target.
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def build_wf_ansatz_prep():
program = Program("""

# set up memory
DECLARE ro BIT[4]
DECLARE theta REAL

# set up initial state
X 0
X 1

# build the exponentiated operator
RX(pi/2) 0
H 1
H 2
H 3

CNOT 0 1
CNOT 1 2
CNOT 2 3
RZ(theta) 3
CNOT 2 3
CNOT 1 2
CNOT 0 1

RX(-pi/2) 0
H 1
H 2
H 3

# measure out the results
MEASURE 0 ro[0]
MEASURE 1 ro[1]
MEASURE 2 ro[2]
MEASURE 3 ro[3]""")

return program

Next, we modify the execution loop. Rather than reformulating the Program object each time, we build and compile
it once, then use the .load() method to transfer the parametric program to the (simulated) quantum device. We then
set only the angle value within the inner loop, and we change to using .run() and .wait() methods to manage
control between us and the quantum device.

More specifically, the old execution loop

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

# set up the Program object, each time we have a new parameter
program = build_wf_ansatz_prep(angle_min + offset * angle_step)
bitstrings = qvm.run(program, indices, trials=shots)

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

becomes

1.2. Forest 2.0: Migration Guide 13



pyQuil Documentation, Release 2.0.0

# set up the Program object, ONLY ONCE
program = build_wf_ansatz_prep()
program.wrap_in_numshots_loop(shots=shots)
nq_program = qc.compiler.quil_to_native_quil(program)
binary = qc.compiler.native_quil_to_executable(nq_program)
qc.qam.load(binary)

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

qc.qam.write_memory(region_name='theta', value=angle_min + offset * angle_step)
qc.qam.run()
qc.qam.wait()
bitstrings = qc.qam.read_memory(region_name="ro")

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

Overall, the resulting program looks like this:

from pyquil.api import get_qc
from pyquil.quil import Program

def setup_forest_objects():
qc = get_qc("9q-square-qvm")
return qc

def build_wf_ansatz_prep():
program = Program("""

# set up memory
DECLARE ro BIT[4]
DECLARE theta REAL

# set up initial state
X 0
X 1

# build the exponentiated operator
RX(pi/2) 0
H 1
H 2
H 3

CNOT 0 1
CNOT 1 2
CNOT 2 3
RZ(theta) 3
CNOT 2 3
CNOT 1 2
CNOT 0 1

(continues on next page)
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(continued from previous page)

RX(-pi/2) 0
H 1
H 2
H 3

# measure out the results
MEASURE 0 ro[0]
MEASURE 1 ro[1]
MEASURE 2 ro[2]
MEASURE 3 ro[3]""")

return program

# some constants
bond_step, bond_min, bond_max = 0.05, 0, 200
angle_step, angle_min, angle_max = 0.1, 0, 63
convolution_coefficients = [0.1698845197777728, 0.16988451977777283, -0.
→˓2188630663199042,

-0.2188630663199042]
shots = 1000

# set up the Forest object
qc = setup_forest_objects()

# set up the Program object, ONLY ONCE
program = build_wf_ansatz_prep()
program.wrap_in_numshots_loop(shots=shots)
nq_program = qc.compiler.quil_to_native_quil(program)
binary = qc.compiler.native_quil_to_executable(nq_program)
qc.qam.load(binary)

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

qc.qam.write_memory(region_name='theta', value=angle_min + offset * angle_step)
qc.qam.run()
qc.qam.wait()
bitstrings = qc.qam.read_memory(region_name="ro")

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

# compute minimum energy as a function of bond length
min_energies = list(range(bond_min, bond_max))
for bond_length in min_energies:

energies = []
for offset in range(angle_min, angle_max):

energy = 0
for j in range(4):

energy += occupations[offset][j] * convolution_coefficients[j]
energies.append(energy)

min_energies[bond_length] = min(energies)
(continues on next page)
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(continued from previous page)

min_index = min_energies.index(min(min_energies))
min_energy, relaxed_length = min_energies[min_index], min_index * bond_step

1.2.8 Miscellanea

Quil promises that a BIT is 1 bit and that an OCTET is 8 bits. Quil does not promise, however, the size or layout of
INTEGER or REAL. These are implementation-dependent.

On the QPU, INTEGER refers to an unsigned integer stored in a 48-bit wide little-endian word, and REAL refers to a
48-bit wide little-endian fixed point number of type <0.48>. In general, these datatypes are implementation-dependent.
OCTET always refers to an 8-bit wide unsigned integer and is independent of implementation.

Memory regions are all “global”: DECLARE directives cannot appear in the body of a DEFCIRCUIT.

On the QVM, INTEGER is a two’s complement signed 64-bit integer. REAL is an IEEE-754 double-precision floating-
point number.

1.2.9 Error reporting

Because the Forest 2.0 execution model is no longer asynchronous, our error reporting model has also changed. Rather
than writing to technical support with a job ID, users will need to provide all pertinent details to how they produced
an error.

PyQuil 2.0 makes this task easy with the function decorator @pyquil_protect, found in the module pyquil.
api. By decorating a failing function (or a function that has the potential to fail), any unhandled exceptions will cause
an error log to be written to disk (at a user-specifiable location). For example, the nonsense code block

from pyquil.api import pyquil_protect

...

@pyquil_protect
def my_function():

...
qc.qam.load(qc)
...

my_function()

causes the following error to be printed:

>>> PYQUIL_PROTECT <<<
An uncaught exception was raised in a function wrapped in pyquil_protect. We are
→˓writing out a
log file to "/Users/your_name/Documents/pyquil/pyquil_error.log".

Along with a description of what you were doing when the error occurred, send this
→˓file to Rigetti Computing
support by email at support@rigetti.com for assistance.
>>> PYQUIL_PROTECT <<<

as well as the following log file to be written to disk at the indicated location:
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{
"stack_trace": [
{

"name": "pyquil_protect_wrapper",
"filename": "/Users/your_name/Documents/pyquil/pyquil/error_reporting.py",
"line_number": 197,
"locals": {

"e": "TypeError('quil_binary argument must be a QVMExecutableResponse. This
→˓error is typically triggered by

forgetting to pass (nativized) Quil to native_quil_to_executable or by
→˓using a compiler meant to be used

for jobs bound for a QPU.',)",
"old_filename": "'pyquil_error.log'",
"kwargs": "{}",
"args": "()",
"log_filename": "'pyquil_error.log'",
"func": "<function my_function at 0x106dc4510>"

}
},
{

"name": "my_function",
"filename": "<stdin>",
"line_number": 10,
"locals": {

"offset": "0",
"occupations": "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

→˓ 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

→˓43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]"

}
},
{

"name": "wrapper",
"filename": "/Users/your_name/Documents/pyquil/pyquil/error_reporting.py",
"line_number": 228,
"locals": {

"pre_entry": "CallLogValue(timestamp_in=datetime.datetime(2018, 9, 11, 18, 40,
→˓ 19, 65538),

timestamp_out=None, return_value=None)",
"key": "run('<pyquil.api._qvm.QVM object at 0x1027e3940>', )",
"kwargs": "{}",
"args": "(<pyquil.api._qvm.QVM object at 0x1027e3940>,)",
"func": "<function QVM.run at 0x106db4e18>"

}
},
{

"name": "run",
"filename": "/Users/your_name/Documents/pyquil/pyquil/api/_qvm.py",
"line_number": 376,
"locals": {

"self": "<pyquil.api._qvm.QVM object at 0x1027e3940>",
"__class__": "<class 'pyquil.api._qvm.QVM'>"

}
}

],
"timestamp": "2018-09-11T18:40:19.253286",

(continues on next page)
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(continued from previous page)

"call_log": {
"__init__('<pyquil.api._qvm.QVM object at 0x1027e3940>', '<pyquil.api._base_

→˓connection.ForestConnection object at
0x1027e3588>', )": {

"timestamp_in": "2018-09-11T18:40:18.967750",
"timestamp_out": "2018-09-11T18:40:18.968170",
"return_value": "None"

},
"run('<pyquil.api._qvm.QVM object at 0x1027e3940>', )": {

"timestamp_in": "2018-09-11T18:40:19.065538",
"timestamp_out": null,
"return_value": null

}
},
"exception": "TypeError('quil_binary argument must be a QVMExecutableResponse. This

→˓error is typically triggered
by forgetting to pass (nativized) Quil to native_quil_to_executable or by using a

→˓compiler meant to be used for
jobs bound for a QPU.',)",

"system_info": {
"python_version": "3.6.3 (default, Jan 25 2018, 13:55:02) \n[GCC 4.2.1 Compatible

→˓Apple LLVM 9.0.0
(clang-900.0.39.2)]",

"pyquil_version": "2.0.0-internal.1"
}

}

Please attach such a logfile to any request for support.

1.3 Programs and Gates

Note: If you’re running locally, remember set up the QVM and quilc in server mode before trying to use them: Setting
Up Server Mode for PyQuil.

1.3.1 Introduction

Quantum programs are written in Forest using the Program object. This Program abstraction will help us compose
Quil programs.

from pyquil import Program

Programs are constructed by adding quantum gates to it, which are defined in the gates module. We can import all
standard gates with the following:

from pyquil.gates import *

Let’s instantiate a Program and add an operation to it. We will act an X gate on qubit 0.

p = Program()
p += X(0)
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All qubits begin in the ground state. This means that if we measure a qubit without applying operations on it, we
expect to receive a 0 result. The X gate will rotate qubit 0 from the ground state to the excited state, so a measurement
immediately after should return a 1 result. More details about gate operations are explained in Introduction to Quantum
Computing.

We can print our pyQuil program (print(p)) to see the equivalent Quil representation:

X 0

This isn’t going to be very useful to us without measurements. In pyQuil 2.0, we have to DECLARE a memory space
to read measurement results, which we call “readout results” and abbreviate as ro. With measurement, our whole
program looks like this:

from pyquil import Program
from pyquil.gates import *

p = Program()
ro = p.declare('ro', 'BIT', 1)
p += X(0)
p += MEASURE(0, ro[0])

print(p)

DECLARE ro BIT[1]
X 0
MEASURE 0 ro[0]

We’ve instantiated a program, declared a memory space named ro with one single bit of memory, applied an X gate
on qubit 0, and finally measured qubit 0 into the zeroth index of the memory space named ro.

Awesome! That’s all we need to get results back. Now we can actually see what happens if we run this program on
the Quantum Virtual Machine (QVM). We just have to add a few lines to do this.

from pyquil import get_qc

...

qc = get_qc('1q-qvm') # You can make any 'nq-qvm' this way for any reasonable 'n'
compiled_program = qc.compile(p)
result = qc.run(compiled_program)
print(result)

Congratulations! You just ran your program on the QVM. The returned value should be:

[[1]]

For more information on what the above result means, and on executing quantum programs on the QVM in general,
see The Quantum Virtual Machine (QVM). The remainder of this section of the docs will be dedicated to constructing
programs in detail, an essential part of becoming fluent in quantum programming.

1.3.2 The Standard Gate Set

The following gates methods come standard with Quil and gates.py:

• Pauli gates I, X, Y, Z

• Hadamard gate: H
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• Phase gates: PHASE(theta), S, T

• Controlled phase gates: CZ, CPHASE00(alpha), CPHASE01(alpha), CPHASE10(alpha),
CPHASE(alpha)

• Cartesian rotation gates: RX(theta), RY(theta), RZ(theta)

• Controlled 𝑋 gates: CNOT, CCNOT

• Swap gates: SWAP, CSWAP, ISWAP, PSWAP(alpha)

The parameterized gates take a real or complex floating point number as an argument.

1.3.3 Declaring Memory

Coming soon

1.3.4 Measurement

Coming soon

Specifying the number of trials

Coming soon

1.3.5 Parametric Compilation

Coming soon

1.3.6 Defining New Gates

New gates can be easily added inline to Quil programs. All you need is a matrix representation of the gate. For
example, below we define a

√
𝑋 gate.

import numpy as np

from pyquil import Program
from pyquil.quil import DefGate

# First we define the new gate from a matrix
sqrt_x = np.array([[ 0.5+0.5j, 0.5-0.5j],

[ 0.5-0.5j, 0.5+0.5j]])

# Get the Quil definition for the new gate
sqrt_x_definition = DefGate("SQRT-X", sqrt_x)
# Get the gate constructor
SQRT_X = sqrt_x_definition.get_constructor()

# Then we can use the new gate
p = Program()
p += sqrt_x_definition
p += SQRT_X(0)
print(p)
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DEFGATE SQRT-X:
0.5+0.5i, 0.5-0.5i
0.5-0.5i, 0.5+0.5i

SQRT-X 0

Below we show how we can define 𝑋0 ⊗
√
𝑋1 as a single gate.

# A multi-qubit defgate example
x_gate_matrix = np.array(([0.0, 1.0], [1.0, 0.0]))
sqrt_x = np.array([[ 0.5+0.5j, 0.5-0.5j],

[ 0.5-0.5j, 0.5+0.5j]])
x_sqrt_x = np.kron(x_gate_matrix, sqrt_x)

Now we can use this gate in the same way that we used SQRT_X, but we will pass it two arguments rather than one,
since it operates on two qubits.

x_sqrt_x_definition = DefGate("X-SQRT-X", x_sqrt_x)
X_SQRT_X = x_sqrt_x_definition.get_constructor()

# Then we can use the new gate
p = Program(x_sqrt_x_definition, X_SQRT_X(0, 1))

Tip: To inspect the wavefunction that will result from applying your new gate, you can use the Wavefunction Simu-
lator (e.g. print(WavefunctionSimulator().wavefunction(p))).

1.3.7 Defining Parametric Gates

Let’s say we want to have a controlled RX gate. Since RX is a parametric gate, we need a slightly different way of
defining it than in the previous section.

from pyquil import Program, WavefunctionSimulator
from pyquil.parameters import Parameter, quil_sin, quil_cos
from pyquil.quilbase import DefGate
import numpy as np

# Define the new gate from a matrix
theta = Parameter('theta')
crx = np.array([

[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, quil_cos(theta / 2), -1j * quil_sin(theta / 2)],
[0, 0, -1j * quil_sin(theta / 2), quil_cos(theta / 2)]

])

gate_definition = DefGate('CRX', crx, [theta])
CRX = gate_definition.get_constructor()

# Create our program and use the new parametric gate
p = Program()
p += gate_definition
p += H(0)
p += CRX(np.pi/2)(0, 1)
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quil_sin and quil_cos work as the regular sines and cosines, but they support the parametrization. Parametrized
functions you can use with pyQuil are: quil_sin, quil_cos, quil_sqrt, quil_exp, and quil_cis.

Tip: To inspect the wavefunction that will result from applying your new gate, you can use the Wavefunction Simu-
lator (e.g. print(WavefunctionSimulator().wavefunction(p))).

1.3.8 Pragmas

Specifying A Qubit Rewiring Scheme

Coming soon

Asking for a Delay

Coming soon (Note: time limit)

1.3.9 Ways to Construct Programs

PyQuil supports a variety of methods for constructing programs however you prefer. Multiple instructions can be
applied at once, and programs can be added together. PyQuil can also produce a Program by interpreting raw Quil
text. You can still use the more pyQuil 1.X style of using the .inst method to add instruction gates. Thus, the
following are all valid programs:

# Preferred method
p = Program()
p += X(0)
p += Y(1)
print(p)

# Multiple instructions in declaration
print(Program(X(0), Y(1)))

# A composition of two programs
print(Program(X(0)) + Program(Y(1)))

# Raw Quil with newlines
print(Program("X 0\nY 1"))

# Raw Quil comma separated
print(Program("X 0", "Y 1"))

# Chained inst; less preferred
print(Program().inst(X(0)).inst(Y(1)))

All of the above methods will produce the same output:

X 0
Y 1

The pyquil.parser submodule provides a front-end to other similar parser functionality.
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Fixing a Mistaken Instruction

If an instruction was appended to a program incorrectly, you can pop it off.

p = Program(X(0), Y(1))
print(p)

print("We can fix by popping:")
p.pop()
print(p)

X 0
Y 1

We can fix by popping:
X 0

1.3.10 QPU-allowable Quil

Apart from DECLARE and PRAGMA directives, a program must break into the following three regions, each optional:

1. A RESET command.

2. A sequence of quantum gate applications.

3. A sequence of MEASURE commands.

The only memory that is writeable is the region named ro, and only through MEASURE instructions. All other memory
is read-only.

The keyword SHARING is disallowed.

Compilation is unavailable for invocations of DEFGATEs with parameters read from classical memory.

1.4 The Quantum Virtual Machine (QVM)

The Rigetti Quantum Virtual Machine is an implementation of the Quantum Abstract Machine from A Practical
Quantum Instruction Set Architecture.1 It is implemented in ANSI Common LISP and executes programs specified
in the Quantum Instruction Language (Quil). Quil is an opinionated quantum instruction language: its basic belief
is that in the near term quantum computers will operate as coprocessors, working in concert with traditional CPUs.
This means that Quil is designed to execute on a Quantum Abstract Machine that has a shared classical/quantum
architecture at its core. The QVM is a wavefunction simulation of unitary evolution with classical control flow and
shared quantum classical memory.

1.4.1 Using the QVM

After downloading the SDK,the QVM is available on your local machine. You can initialize a local QVM instance by
doing the following:

### CONSOLE 1
$ qvm -S
Configured with 2048 MiB of workspace and 8 workers.)
[2018-09-20 15:39:50] Starting server on port 5000.

1 https://arxiv.org/abs/1608.03355
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from pyquil import get_qc, Program
from pyquil.gates import *
qvm = get_qc('9q-square-qvm')

One executes quantum programs on the QVM using a .run(...) method, intended to closely mirror how one will
execute programs on a real QPU (check out our website to see current and legacy QPUs). We also offer a Wavefunction
Simulator (formerly a part of the QVM object), which allows users to contruct and inspect wavefunctions of quantum
programs. Learn more about The Wavefunction Simulator.

(For information on constructing quantum programs, please refer back to Programs and Gates.)

The .run(...) method

program = Program(X(0), MEASURE(0, 0))
results = qvm.run(program)
# results = [[1]]

The .run(...) method takes numerous arguments, several of which are optional. The most important are

1. the program to be executed on the QVM,

2. the classical_addresses which to be returned from the QVM (not included above; by default, these are
set to the addresses used in the program’s MEASURE instructions), and

3. the number of trials to be executed on the machine.

The results returned are a list of lists of integers. In the above case, that’s

[[1]]

Let’s unpack this. The outer list is an enumeration over the trials; if you set trials=1 then len(results) should
equal 1.

The inner list, on the other hand, is an enumeration over the results stored in the classical addresses. We see that the
result of this program is that the classical register [0] now stores the state of qubit 0, which should be 1 after an
𝑋-gate. We can of course ask for more classical registers:

qvm.run(p, [0, 1, 2])

[[1, 0, 0]]

The classical registers are initialized to zero, so registers [1] and [2] come out as zero. If we stored the measurement
in a different classical register we would obtain:

p = Program() # clear the old program
p.inst(X(0)).measure(0, 1)
qvm.run(p, [0, 1, 2])

[[0, 1, 0]]

We can also run programs multiple times and accumulate all the results in a single list.

coin_flip = Program().inst(H(0)).measure(0, 0)
num_flips = 5
qvm.run(coin_flip, [0], num_flips)
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[[0], [1], [0], [1], [0]]

Try running the above code several times. You will see that you will, with very high probability, get different results
each time.

1.4.2 Multi-Qubit Basis Enumeration

The Rigetti QVM enumerates bitstrings such that qubit 0 is the least significant bit (LSB) and therefore on the right
end of a bitstring as shown in the table below which contains some examples.

bitstring qubit_(n-1) . . . qubit_2 qubit_1 qubit_0
1. . . 101 1 . . . 1 0 1
0. . . 110 0 . . . 1 1 0

This convention is counter to that often found in the quantum computing literature where bitstrings are often ordered
such that the lowest-index qubit is on the left. The vector representation of a wavefunction assumes the “canonical”
ordering of basis elements. I.e., for two qubits this order is 00, 01, 10, 11. In the typical Dirac notation for
quantum states, the tensor product of two different degrees of freedom is not always explicitly understood as having a
fixed order of those degrees of freedom. This is in contrast to the kronecker product between matrices which uses the
same mathematical symbol and is clearly not commutative. This, however, becomes important when writing things
down as coefficient vectors or matrices:

00 ⊗ 11 = 11 ⊗ 00 = 101,0 ≡

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠
As a consequence there arise some subtle but important differences in the ordering of wavefunction and multi-qubit
gate matrix coefficients. According to our conventions the matrix

𝑈CNOT(1,0) ≡

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
corresponds to the Quil instruction CNOT(1, 0) which is counter to how most other people in the field order their
tensor product factors (or more specifically their kronecker products). In this convention CNOT(0, 1) is given by

𝑈CNOT(0,1) ≡

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠
For additional information why we decided on this basis ordering check out our note Someone shouts, “|01000>!”
Who is Excited?2.

1.4.3 Simulating the QPU using the QVM

The QVM is a powerful tool for testing quantum programs before executing them on the QPU. In addition to the
noise.py module for generating custom noise models for simulating noise on the QVM, pyQuil provides a simple
interface for loading the QVM with noise models tailored to Rigetti’s available QPUs, in just one modified line of

2 https://arxiv.org/abs/1711.02086
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code. This is made possible via the Device class, which holds hardware specification information, noise model
information, and instruction set architecture (ISA) information regarding connectivity. This information is held in the
Specs, ISA and NoiseModel attributes of the Device class, respectively.

Specifically, to load a QVM with the NoiseModel information from a Device, all that is required is to provide a
Device object to the QVM during initialization:

Note: This feature is currently deprecated, in advance of a new QPU (with new noise models). For users interested in
creating noise models for the QVM, you can do so by following the instructions in Noise and Quantum Computation.

from pyquil.api import get_devices, QVMConnection

device_name = get_device('quantum_device_name')
qvm = QVMConnection(device_name)

By simply providing a device during QVM initialization, all programs executed on this QVM will, by default, have
noise applied that is characteristic of the corresponding Rigetti QPU (in the case above, the agave device). One may
then efficiently test realistic quantum algorithms on the QVM, in advance of running those programs on the QPU.

1.4.4 Examples of Quantum Programs

To create intuition for a new class of algorithms, that will run on the Quantum Virtual Machine (QVM), it is useful
(and fun) to play with the abstraction that the software provides.

A broad class of programs that can easily be implemented on a QVM are generalizations of Game Theory to incorpo-
rate Quantum Strategies.

Meyer-Penny Game

A conceptually simple example that falls into this class is the Meyer-Penny Game. The game goes as follows: The
Starship Enterprise, during one of its deep-space missions, is facing an immediate calamity, when a powerful alien
suddenly appears on the bridge. The alien, named Q, offers to help Picard, the captain of the Enterprise, under the
condition that Picard beats Q in a simple game of penny flips.

The rules: Picard is to place a penny Heads up into an opaque box. Then Picard and Q take turns to flip or not flip
the penny without being able to see it; first Q then P then Q again. After this the penny is revealed;Q wins if it shows
Heads (H), while Tails (T) makes Picard the winner.

Picard quickly estimates that his chance of winning is 50% and agrees to play the game. He loses the first round
and insists on playing again. To his surprise Q agrees, and they continue playing several rounds more, each of which
Picard loses. How is that possible?

What Picard did not anticipate is that Q has access to quantum tools. Instead of flipping the penny, Q puts the penny
into a superposition of Heads and Tails proportional to the quantum state |𝐻⟩ + |𝑇 ⟩. Then no matter whether Picard
flips the penny or not, it will stay in a superposition (though the relative sign might change). In the third step Q undoes
the superposition and always finds the penny to shows Heads.

To simulate the game we first construct the corresponding quantum circuit, which takes two qubits – one to simulate
Picard’s choice whether or not to flip the penny and the other to represent the penny. The initial state for all Qubits
is |0⟩(= |𝑇 ⟩). To simulate Picard’s decision, we assume that he chooses randomly whether or not to flip the coin, in
agreement with the optimal strategy for the classic penny-flip game. This random choice can be created by putting one
qubit into an equal superposition, e.g. with the Hadamard gate H, and then measure its state. The measurement will
show Heads or Tails with equal probability p=0.5.
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To simulate the penny flip game we take the second qubit and put it into its excited state |1⟩(= |𝐻⟩) by applying the
X (or NOT) gate. Q’s first move is to apply the Hadamard gate H. Picard’s decision about the flip is simulated as a
CNOT operation where the control bit is the outcome of the random number generator described above. Finally Q
applies a Hadamard gate again, before we measure the outcome. The full circuit is shown in the figure below.

First we import all the necessary tools:

from pyquil import get_qc
from pyquil.gates import I, H, X
from pyquil import Program
from pyquil.api import WavefunctionSimulator
prog = Program()
ro = prog.declare('classical_register', 'BIT', 2)
qvm = get_qc('9q-generic-qvm')

Then we need to define two registers that will be used for the measurement of Picard’s decision bit and the final answer
of the penny tossing game.

prog = Program()
ro = prog.declare('classical_register', 'BIT', 2)
picard_register = ["1"]
answer_register = ["0"]

Moreover we need to encode the two different actions of Picard, which conceptually is equivalent to an if-else control
flow as:

then_branch = Program(X(0))
else_branch = Program(I(0))

and then wire it all up into the overall measurement circuit:

prog = (Program()
# Prepare Qubits in Heads state or superposition, respectively
.inst(X(0), H(1))
# Q puts the penny into a superposition
.inst(H(0))
# Picard makes a decision and acts accordingly
.measure(1, picard_register)
.if_then(picard_register, then_branch, else_branch)
# Q undoes his superposition operation
.inst(H(0))
# The outcome is recorded into the answer register
.measure(0, answer_register))

Finally we play the game several times
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qvm.run_and_measure(prog, [0, 1], 10)

and record the register outputs as

[[1, 1],
[1, 1],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 1],
[1, 1],
[1, 0],
[1, 0]]

Remember that the first number is the outcome of the game (value of the answer_register) whereas the second number
is the outcome of Picard’s decision (value of the picard_register).

Indeed, no matter what Picard does, Q will always win!

Exercises

Prisoner’s Dilemma

A classic strategy game is the prisoner’s dilemma where two prisoners get the minimal penalty if they collaborate
and stay silent, get zero penalty if one of them defects and the other collaborates (incurring maximum penalty) and
get intermediate penalty if they both defect. This game has an equilibrium where both defect and incur intermediate
penalty.

However, things change dramatically when we allow for quantum strategies leading to the Quantum Prisoner’s
Dilemma.

Can you design a program that simulates this game?

1.5 The Wavefunction Simulator

Formerly a part of the QVM object in pyQuil, the Wavefunction Simulator allows you to directly inspect the wave-
function of a quantum state prepared by your program. Because of the probabilistic nature of quantum information,
the programs you’ll be running on the QPU can give a distribution of outputs. When running on the QPU or QVM,
you would aggregate results (anywhere from tens of trials to 100k+!) that you can sample to get back a distribution.

With the Wavefunction Simulator, you can look at the distribution without having to collect samples from your pro-
gram. This can save a lot of time for small programs. Let’s walk through a basic example of using WavefunctionSim-
ulator:

from pyquil import Program
from pyquil.gates import *
from pyquil.api import WavefunctionSimulator
wf_sim = WavefunctionSimulator()
coin_flip = Program((H(0))
wf_sim.wavefunction(coin_flip)

<pyquil.wavefunction.Wavefunction at 0x1088a2c10>
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The return value is a Wavefunction object that stores the amplitudes of the quantum state. We can print this object

coin_flip = Program(H(0))
wavefunction = wf_sim.wavefunction(coin_flip)
print(wavefunction)

(0.7071067812+0j)|0> + (0.7071067812+0j)|1>

to see the amplitudes listed as a sum of computational basis states. We can index into those amplitudes directly or look
at a dictionary of associated outcome probabilities.

assert wavefunction[0] == 1 / np.sqrt(2)
# The amplitudes are stored as a numpy array on the Wavefunction object
print(wavefunction.amplitudes)
prob_dict = wavefunction.get_outcome_probs() # extracts the probabilities of outcomes
→˓as a dict
print(prob_dict)
prob_dict.keys() # these store the bitstring outcomes
assert len(wavefunction) == 1 # gives the number of qubits

[ 0.70710678+0.j 0.70710678+0.j]
{'1': 0.49999999999999989, '0': 0.49999999999999989}

It is important to remember that this wavefunction method is a useful debugging tool for small quantum systems,
and cannot be feasibly obtained on a quantum processor.

1.5.1 Meyer-Penny Game

A conceptually simple example that falls into this class is the Meyer-Penny Game. The game goes as follows:

The Starship Enterprise, during one of its deep-space missions, is facing an immediate calamity, when a powerful alien
suddenly appears on the bridge. The alien, named Q, offers to help Picard, the captain of the Enterprise, under the
condition that Picard beats Q in a simple game of penny flips.

The rules:

Picard is to place a penny Heads up into an opaque box. Then Picard and Q take turns to flip or not flip the penny
without being able to see it; first Q then P then Q again. After this the penny is revealed;Q wins if it shows Heads (H),
while Tails (T) makes Picard the winner.

Picard vs. Q

Picard estimates that his chance of winning is 50% and agrees to play the game. He loses the first round and insists on
playing again. To his surprise Q agrees, and they continue playing several rounds more, each of which Picard loses.
How is that possible?

What Picard did not anticipate is that Q has access to quantum tools. Instead of flipping the penny, Q puts the penny
into a superposition of Heads and Tails proportional to the quantum state |H+|T. Then no matter whether Picard flips
the penny or not, it will stay in a superposition (though the relative sign might change). In the third step Q undoes the
superposition and always finds the penny to shows Heads.

Let’s see how this works!

To simulate the game, we first construct the corresponding quantum circuit, which takes two qubits – one to simulate
Picard’s choice whether or not to flip the penny and the other to represent the penny. The initial state for all Qubits
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is |0(=|T). To simulate Picard’s decision, we assume that he chooses randomly whether or not to flip the coin, in
agreement with the optimal strategy for the classic penny-flip game. This random choice can be created by putting one
qubit into an equal superposition, e.g. with the Hadamard gate H, and then measure its state. The measurement will
show Heads or Tails with equal probability p=0.5.

To simulate the penny flip game we take the second qubit and put it into its excited state |1(=|H) by applying the X (or
NOT) gate. Q’s first move is to apply the Hadamard gate H. Picard’s decision about the flip is simulated as a CNOT
operation where the control bit is the outcome of the random number generator described above. Finally Q applies a
Hadamard gate again, before we measure the outcome.

We first import the necessary tools

from pyquil import Program
from pyquil.api import WavefunctionSimulator
from pyquil.gates import *

wf_sim = WavefunctionSimulator()
prog = Program()
ro = prog.declare('ro', 'BIT', 2)

Then we need to define two registers that will be used for the measurement of Picard’s decision bit and the final answer
of the penny tossing game.

picard_register = ro[1]
answer_register = ro[0]

We need to encode the two different actions of Picard, which conceptually is equivalent to an if-else control flow as:

then_branch = Program(X(0))
else_branch = Program(I(0))

and then wire it all up into the overall measurement circuit:

prog.inst(X(0), H(1))
prog.inst(H(0))
prog.measure(1, picard_register)
prog.if_then(picard_register, then_branch, else_branch)
prog.inst(H(0))
prog.measure(0, answer_register)
print(prog)

Finally we play the game several times

wf_sim.run_and_measure(prog, [0, 1], 10)

Remember that the first number is the outcome of the game (value of the answer_register) whereas the second number
is the outcome of Picard’s decision (value of the picard_register).

No matter what Picard does, Q will always win!

1.6 The Quil Compiler

1.6.1 Expectations for Program Contents

The QPUs have much more limited natural gate sets than the standard gate set offered by pyQuil: the gate operators are
constrained to lie in RZ(𝜃), RX(k𝜋/2), and CZ; and the gates are required to act on physically available hardware
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(for single-qubit gates, this means acting only on live qubits, and for qubit-pair gates, this means acting on neighboring
qubits). To ameliorate these limitations, the Rigetti software toolkit contains an optimizing compiler that translates
arbitrary Quil to native Quil and native ProtoQuil to executables suitable for Rigetti hardware.

1.6.2 Interacting with the Compiler

A QuantumComputer object supplied by the function pyquil.api.get_qc() comes equipped with a connec-
tion to a Rigetti quantum compiler. If the object is called qc, then this can be accessed using the instance method
.compile(), as in the following:

from pyquil.quil import Pragma, Program
from pyquil.api import get_qc
from pyquil.gates import CNOT, H

qc = get_qc("9q-square-qvm")

ep = qc.compile(Program(H(0), CNOT(0,1), CNOT(1,2)))

print(ep.program) # here ep is of type PyquilExecutableResponse, which is not always
→˓inspectable

with output

PRAGMA EXPECTED_REWIRING "#(7 8 5 0 1 2 3 4 6)"
RZ(pi/2) 7
RX(pi/2) 7
RZ(-pi/2) 8
RX(pi/2) 8
CZ 8 7
RZ(-pi/2) 5
RX(pi/2) 5
RX(-pi/2) 8
CZ 5 8
RX(-pi/2) 5
RZ(pi/2) 5
RZ(-pi/2) 7
RZ(-pi/2) 8
PRAGMA CURRENT_REWIRING "#(7 8 5 0 1 2 3 4 6)"
PRAGMA EXPECTED_REWIRING "#(7 8 5 0 1 2 3 4 6)"
PRAGMA CURRENT_REWIRING "#(7 8 5 0 1 2 3 4 6)"

The compiler connection is also available directly via the property qc.compiler. The precise class of this object
changes based on context (e.g., QPUCompiler, QVMCompiler, or LocalQVMCompiler), but it always conforms
to the interface laid out by pyquil.api._qac:

• compiler.quil_to_native_quil(program): This method converts a Quil program into native Quil,
according to the ISA that the compiler is initialized with. The input parameter is specified as a Program object,
and the output is given as a new Program object, equipped with a .metadata property that gives extraneous
information about the compilation output (e.g., gate depth, as well as many others). This call blocks until Quil
compilation finishes.

• compiler.native_quil_to_executable(nq_program): This method converts a ProtoQuil pro-
gram, which is promised to consist only of native gates for a given ISA, into an executable suitable for submis-
sion to one of a QVM or a QPU. This call blocks until the executable is generated.

The instance method qc.compile described above is a combination of these two methods: first the incoming Quil
is nativized, and then that is immediately turned into an executable. Accordingly, the previous example snippet is
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identical to the following:

from pyquil.quil import Pragma, Program
from pyquil.api import get_qc
from pyquil.gates import CNOT, H

qc = get_qc("9q-square-qvm")

p = Program(H(0), CNOT(0,1), CNOT(1,2))
np = qc.compiler.quil_to_native_quil(p)
ep = qc.compiler.native_quil_to_executable(np)

print(ep.program) # here ep is of type PyquilExecutableResponse, which is not always
→˓inspectable

1.6.3 Legal compiler input

The QPU is not able to execute all possible Quil programs, and so Quil bound for execution on a QPU must conform
to the “ProtoQuil” standard. At present, a Quil program qualifies as ProtoQuil if it has the following form:

• The program may or may not begin with a RESET instruction. (If provided, the QPU will actively reset the
state of the quantum device to the ground state before program execution. If omitted, the QPU will wait for a
relaxation period to pass before program execution instead.)

• This is then followed by a block of native quantum gates. A gate is native if it is of the form RZ(𝜃) for any
value 𝜃, RX(k𝜋/2) for an integer k, or CZ q0 q1 for q0, q1 a pair of qubits participating in a qubit-qubit
interaction.

• This is then followed by a block of MEASURE instructions.

1.6.4 Region-specific compiler features through PRAGMA

The Quil compiler can also be communicated with through PRAGMA commands embedded in the Quil program.

Note: The pyQuil compiler interface is under construction, and some of the PRAGMA directives will soon be replaced
by finer-grained method calls.

Preserved regions

The compiler can be circumvented in user-specified regions. The start of such a region is denoted by PRAGMA
PRESERVE_BLOCK, and the end is denoted by PRAGMA END_PRESERVE_BLOCK. The Quil compiler promises
not to modify any instructions contained in such a region.

The following is an example of a program that prepares a Bell state on qubits 0 and 1, then performs a time de-
lay to invite noisy system interaction before measuring the qubits. The time delay region is marked by PRAGMA
PRESERVE_BLOCK and PRAGMA END_PRESERVE_BLOCK; without these delimiters, the compiler will remove
the identity gates that serve to provide the time delay. However, the regions outside of the PRAGMA region will still be
compiled, converting the Bell state preparation to the native gate set.

DECLARE ro BIT[2]

# prepare a Bell state

(continues on next page)
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(continued from previous page)

H 0
CNOT 0 1

# wait a while
PRAGMA PRESERVE_BLOCK
I 0
I 1
I 0
I 1
# ...
I 0
I 1
PRAGMA END_PRESERVE_BLOCK

# and read out the results
MEASURE 0 ro[0]
MEASURE 1 ro[1]

Parallelizable regions

The compiler can sometimes arrange gate sequences more cleverly if the user gives it hints about sequences of gates
that commute. A region containing commuting sequences is bookended by PRAGMA COMMUTING_BLOCKS and
PRAGMA END_COMMUTING_BLOCKS; within such a region, a given commuting sequence is bookended by PRAGMA
BLOCK and PRAGMA END_BLOCK.

The following snippet demonstrates this hinting syntax in a context typical of VQE-type algorithms: after a first stage
of performing some state preparation on individual qubits, there is a second stage of “mixing operations” that both
re-use qubit resources and mutually commute, followed by a final rotation and measurement. The following program
is naturally laid out on a ring with vertices (read either clockwise or counterclockwise) as 0, 1, 2, 3. After scheduling
the first round of preparation gates, the compiler will use the hinting to schedule the first and third blocks (which
utilize qubit pairs 0-1 and 2-3) before the second and fourth blocks (which utilize qubit pairs 1-2 and 0-3), resulting in
a reduction in circuit depth by one half. Without hinting, the compiler will instead execute the blocks in their written
order.

DECLARE ro BIT[4]

# Stage one
H 0
H 1
H 2
H 3

# Stage two
PRAGMA COMMUTING_BLOCKS
PRAGMA BLOCK
CNOT 0 1
RZ(0.4) 1
CNOT 0 1
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 1 2
RZ(0.6) 2
CNOT 1 2
PRAGMA END_BLOCK
PRAGMA BLOCK

(continues on next page)
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(continued from previous page)

CNOT 2 3
RZ(0.8) 3
CNOT 2 3
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 0 3
RZ(0.9) 3
CNOT 0 3
PRAGMA END_BLOCK
PRAGMA END_COMMUTING_BLOCKS

# Stage three
H 0
H 1
H 2
H 3

MEASURE 0 ro[0]
MEASURE 1 ro[1]
MEASURE 2 ro[2]
MEASURE 3 ro[3]

Rewirings

When a Quil program contains multi-qubit instructions that do not name qubit-qubit links present on a target device,
the compiler will rearrange the qubits so that execution becomes possible. In order to help the user understand what
rearrangement may have been done, the compiler emits two forms of PRAGMA: PRAGMA EXPECTED_REWIRING
and PRAGMA CURRENT_REWIRING. From the perspective of the user, both PRAGMA instructions serve the same
purpose: PRAGMA ..._REWIRING "#(n0 n1 ... nk)" indicates that the logical qubit labeled j in the pro-
gram has been assigned to lie on the physical qubit labeled nj on the device. This is strictly for human-readability:
user-supplied instructions of the form PRAGMA [EXPECTED|CURRENT]_REWIRING are discarded and have no
effect.

In addition, you have some control over how the compiler constructs its rewiring. If you include a PRAGMA
INITIAL_REWIRING "[NAIVE|RANDOM|PARTIAL|GREEDY]" instruction before any non-pragmas, the com-
piler will alter its rewiring behavior.

• PARTIAL (default): The compiler will start with nothing assigned to each physical qubit. Then, it will fill in the
logical-to-physical mapping as it encounters new qubits in the program, making its best guess for where they
should be placed.

• NAIVE: The compiler will start with an identity mapping as the initial rewiring. In particular, qubits will not be
rewired unless the program requests a qubit-qubit interaction not natively available on the QPU.

• RANDOM: the compiler will start with a random permutation

• GREEDY: the compiler will make a guess for the initial rewiring based on a quick initial scan of the entire
program.

1.6.5 Common Error Messages

The compiler itself is subject to some limitations, and some of the more commonly observed errors follow:

• ! ! ! Error: Matrices do not lie in the same projective class. The compiler
attempted to decompose an operator as native Quil instructions, and the resulting instructions do not match
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the original operator. This can happen when the original operator is not a unitary matrix, and could indicate an
invalid DEFGATE block.

1.7 Noise and Quantum Computation

1.7.1 Modeling Noisy Quantum Gates

Pure States vs. Mixed States

Errors in quantum computing can introduce classical uncertainty in what the underlying state is. When this happens
we sometimes need to consider not only wavefunctions but also probabilistic sums of wavefunctions when we are
uncertain as to which one we have. For example, if we think that an X gate was accidentally applied to a qubit with
a 50-50 chance then we would say that there is a 50% chance we have the 0 state and a 50% chance that we have
a 1 state. This is called an “impure” or “mixed”state in that it isn’t just a wavefunction (which is pure) but instead
a distribution over wavefunctions. We describe this with something called a density matrix, which is generally an
operator. Pure states have very simple density matrices that we can write as an outer product of a ket vector 𝜓 with its
own bra version 𝜓 = 𝜓†. For a pure state the density matrix is simply

𝜌𝜓 = 𝜓𝜓.

The expectation value of an operator for a mixed state is given by

⟨𝑋⟩𝜌 = 𝑋𝜌

where · is the trace of an operator, which is the sum of its diagonal elements, which is independent of choice of basis.
Pure state density matrices satisfy

𝜌 is pure ⇔ 𝜌2 = 𝜌

which you can easily verify for 𝜌𝜓 assuming that the state is normalized. If we want to describe a situation with
classical uncertainty between states 𝜌1 and 𝜌2, then we can take their weighted sum

𝜌 = 𝑝𝜌1 + (1 − 𝑝)𝜌2

where 𝑝 ∈ [0, 1] gives the classical probability that the state is 𝜌1.

Note that classical uncertainty in the wavefunction is markedly different from superpositions. We can represent su-
perpositions using wavefunctions, but use density matrices to describe distributions over wavefunctions. You can read
more about density matrices here [DensityMatrix].

Quantum Gate Errors

For a quantum gate given by its unitary operator 𝑈 , a “quantum gate error” describes the scenario in which the actually
induces transformation deviates from 𝜓 ↦→ 𝑈𝜓. There are two basic types of quantum gate errors:

1. coherent errors are those that preserve the purity of the input state, i.e., instead of the above mapping we carry
out a perturbed, but unitary operation 𝜓 ↦→ 𝑈̃𝜓, where 𝑈̃ ̸= 𝑈 .

2. incoherent errors are those that do not preserve the purity of the input state, in this case we must actually
represent the evolution in terms of density matrices. The state 𝜌 := 𝜓𝜓 is then mapped as

𝜌 ↦→
𝑛∑︁
𝑗=1

𝐾𝑗𝜌𝐾
†
𝑗 ,
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where the operators {𝐾1,𝐾2, . . . ,𝐾𝑚} are called Kraus operators and must obey
∑︀𝑚
𝑗=1𝐾

†
𝑗𝐾𝑗 = 𝐼 to conserve

the trace of 𝜌. Maps expressed in the above form are called Kraus maps. It can be shown that every physical
map on a finite dimensional quantum system can be represented as a Kraus map, though this representation is
not generally unique. You can find more information about quantum operations here

In a way, coherent errors are in principle amendable by more precisely calibrated control. Incoherent errors are more
tricky.

Why Do Incoherent Errors Happen?

When a quantum system (e.g., the qubits on a quantum processor) is not perfectly isolated from its environment it
generally co-evolves with the degrees of freedom it couples to. The implication is that while the total time evolution
of system and environment can be assumed to be unitary, restriction to the system state generally is not.

Let’s throw some math at this for clarity: Let our total Hilbert space be given by the tensor product of system and
environment Hilbert spaces: ℋ = ℋ𝑆 ⊗ ℋ𝐸 . Our system “not being perfectly isolated” must be translated to the
statement that the global Hamiltonian contains a contribution that couples the system and environment:

𝐻 = 𝐻𝑆 ⊗ 𝐼 + 𝐼 ⊗𝐻𝐸 + 𝑉

where 𝑉 non-trivally acts on both the system and the environment. Consequently, even if we started in an initial state
that factorized over system and environment 𝜓𝑆,0 ⊗ 𝜓𝐸,0 if everything evolves by the Schrödinger equation

𝜓𝑡 = 𝑒−𝑖
𝐻𝑡
~ (𝜓𝑆,0 ⊗ 𝜓𝐸,0)

the final state will generally not admit such a factorization.

A Toy Model

In this (somewhat technical) section we show how environment interaction can corrupt an identity gate and
derive its Kraus map. For simplicity, let us assume that we are in a reference frame in which both the system and
environment Hamiltonian’s vanish 𝐻𝑆 = 0, 𝐻𝐸 = 0 and where the cross-coupling is small even when multiplied by
the duration of the time evolution ‖ 𝑡𝑉~ ‖2 ∼ 𝜖 ≪ 1 (any operator norm ‖ · ‖ will do here). Let us further assume that
𝑉 =

√
𝜖𝑉𝑆⊗𝑉𝐸 (the more general case is given by a sum of such terms) and that the initial environment state satisfies

𝜓𝐸,0𝑉𝐸𝜓𝐸,0 = 0. This turns out to be a very reasonable assumption in practice but a more thorough discussion
exceeds our scope.

Then the joint system + environment state 𝜌 = 𝜌𝑆,0 ⊗ 𝜌𝐸,0 (now written as a density matrix) evolves as

𝜌 ↦→ 𝜌′ := 𝑒−𝑖
𝑉 𝑡
~ 𝜌𝑒+𝑖

𝑉 𝑡
~

Using the Baker-Campbell-Hausdorff theorem we can expand this to second order in 𝜖

𝜌′ = 𝜌− 𝑖𝑡

~
[𝑉, 𝜌] − 𝑡2

2~2
[𝑉, [𝑉, 𝜌]] +𝑂(𝜖3/2)

We can insert the initially factorizable state 𝜌 = 𝜌𝑆,0 ⊗ 𝜌𝐸,0 and trace over the environmental degrees of freedom to
obtain

𝜌′𝑆 := 𝜌′𝐸 = 𝜌𝑆,0 𝜌𝐸,01⏟  ⏞  − 𝑖
√
𝜖𝑡

~

⎡⎢⎣𝑉𝑆𝜌𝑆,0 𝑉𝐸𝜌𝐸,0⏟  ⏞  
𝜓𝐸,0𝑉𝐸𝜓𝐸,0=0

−𝜌𝑆,0𝑉𝑆 𝜌𝐸,0𝑉𝐸⏟  ⏞  
𝜓𝐸,0𝑉𝐸𝜓𝐸,0=0

⎤⎥⎦
⏟  ⏞  

0

(1.1)

− 𝜖𝑡2

2~2
[︀
𝑉 2
𝑆 𝜌𝑆,0𝑉

2
𝐸𝜌𝐸,0 + 𝜌𝑆,0𝑉

2
𝑆 𝜌𝐸,0𝑉

2
𝐸 − 2𝑉𝑆𝜌𝑆,0𝑉𝑆𝑉𝐸𝜌𝐸,0𝑉𝐸

]︀
(1.2)

= 𝜌𝑆,0 −
𝛾

2

[︀
𝑉 2
𝑆 𝜌𝑆,0 + 𝜌𝑆,0𝑉

2
𝑆 − 2𝑉𝑆𝜌𝑆,0𝑉𝑆

]︀
(1.3)
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where the coefficient in front of the second part is by our initial assumption very small 𝛾 := 𝜖𝑡2

2~2𝑉
2
𝐸𝜌𝐸,0 ≪ 1. This

evolution happens to be approximately equal to a Kraus map with operators 𝐾1 := 𝐼 − 𝛾
2𝑉

2
𝑆 ,𝐾2 :=

√
𝛾𝑉𝑆 :

𝜌𝑆 → 𝜌′𝑆 = 𝐾1𝜌𝐾
†
1 +𝐾2𝜌𝐾

†
2 = 𝜌− 𝛾

2

[︀
𝑉 2
𝑆 𝜌+ 𝜌𝑉 2

𝑆

]︀
+ 𝛾𝑉𝑆𝜌𝑆𝑉𝑆 +𝑂(𝛾2) (1.4)

This agrees to 𝑂(𝜖3/2) with the result of our derivation above. This type of derivation can be extended to many other
cases with little complication and a very similar argument is used to derive the Lindblad master equation.

1.7.2 Noisy Gates on the Rigetti QVM

As of today, users of our Forest SDK can annotate their QUIL programs by certain pragma statements that inform the
QVM that a particular gate on specific target qubits should be replaced by an imperfect realization given by a Kraus
map.

The QVM propagates pure states — so how does it simulate noisy gates? It does so by yielding the correct outcomes
in the average over many executions of the QUIL program: When the noisy version of a gate should be applied
the QVM makes a random choice which Kraus operator is applied to the current state with a probability that ensures
that the average over many executions is equivalent to the Kraus map. In particular, a particular Kraus operator 𝐾𝑗 is
applied to 𝜓𝑆

𝜓′
𝑆 =

1
√
𝑝𝑗
𝐾𝑗𝜓𝑆

with probability 𝑝𝑗 := 𝜓𝑆𝐾
†
𝑗𝐾𝑗𝜓𝑆 . In the average over many execution 𝑁 ≫ 1 we therefore find that

𝜌′𝑆 =
1

𝑁

𝑁∑︁
𝑛=1

𝜓′
𝑛𝑆𝜓

′
𝑛𝑆 (1.5)

=
1

𝑁

𝑁∑︁
𝑛=1

𝑝−1
𝑗𝑛
𝐾𝑗𝑛𝜓

′
𝑆𝜓

′
𝑆𝐾

†
𝑗𝑛

(1.6)

where 𝑗𝑛 is the chosen Kraus operator label in the 𝑛-th trial. This is clearly a Kraus map itself! And we can group
identical terms and rewrite it as

𝜌′𝑆 =

𝑛∑︁
ℓ=1

𝑁ℓ
𝑁
𝑝−1
ℓ 𝐾ℓ𝜓

′
𝑆𝜓

′
𝑆𝐾

†
ℓ (1.7)

where𝑁ℓ is the number of times that Kraus operator label ℓwas selected. For large enough𝑁 we know that𝑁ℓ ≈ 𝑁𝑝ℓ
and therefore

𝜌′𝑆 ≈
𝑛∑︁
ℓ=1

𝐾ℓ𝜓
′
𝑆𝜓

′
𝑆𝐾

†
ℓ (1.8)

which proves our claim. The consequence is that noisy gate simulations must generally be repeated many times
to obtain representative results.

Getting Started

1. Come up with a good model for your noise. We will provide some examples below and may add more such
examples to our public repositories over time. Alternatively, you can characterize the gate under consideration
using Quantum Process Tomography or Gate Set Tomography and use the resulting process matrices to obtain a
very accurate noise model for a particular QPU.

2. Define your Kraus operators as a list of numpy arrays kraus_ops = [K1, K2, ..., Km].
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3. For your QUIL program p, call:

p.define_noisy_gate("MY_NOISY_GATE", [q1, q2], kraus_ops)

where you should replace MY_NOISY_GATE with the gate of interest and q1, q2 the indices of the qubits.

Scroll down for some examples!

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom
import matplotlib.colors as colors
%matplotlib inline

from pyquil.quil import Program, MEASURE
from pyquil.api import QVMConnection
from pyquil.gates import CZ, H, I, X
from scipy.linalg import expm

cxn = QVMConnection()

Example 1: Amplitude Damping

Amplitude damping channels are imperfect identity maps with Kraus operators

𝐾1 =

(︂
1 0
0

√
1 − 𝑝

)︂
𝐾2 =

(︂
0

√
𝑝

0 0

)︂
where 𝑝 is the probability that a qubit in the 1 state decays to the 0 state.

def damping_channel(damp_prob=.1):
"""
Generate the Kraus operators corresponding to an amplitude damping
noise channel.

:params float damp_prob: The one-step damping probability.
:return: A list [k1, k2] of the Kraus operators that parametrize the map.
:rtype: list
"""
damping_op = np.sqrt(damp_prob) * np.array([[0, 1],

[0, 0]])

residual_kraus = np.diag([1, np.sqrt(1-damp_prob)])
return [residual_kraus, damping_op]

def append_kraus_to_gate(kraus_ops, g):
"""
Follow a gate `g` by a Kraus map described by `kraus_ops`.

:param list kraus_ops: The Kraus operators.
:param numpy.ndarray g: The unitary gate.
:return: A list of transformed Kraus operators.
"""

(continues on next page)
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return [kj.dot(g) for kj in kraus_ops]

def append_damping_to_gate(gate, damp_prob=.1):
"""
Generate the Kraus operators corresponding to a given unitary
single qubit gate followed by an amplitude damping noise channel.

:params np.ndarray|list gate: The 2x2 unitary gate matrix.
:params float damp_prob: The one-step damping probability.
:return: A list [k1, k2] of the Kraus operators that parametrize the map.
:rtype: list
"""
return append_kraus_to_gate(damping_channel(damp_prob), gate)

%%time

# single step damping probability
damping_per_I = 0.02

# number of program executions
trials = 200

results = []
outcomes = []
lengths = np.arange(0, 201, 10, dtype=int)
for jj, num_I in enumerate(lengths):

print("{}/{}, ".format(jj, len(lengths)), end="")

p = Program(X(0))
# want increasing number of I-gates
p.inst([I(0) for _ in range(num_I)])
p.inst(MEASURE(0, [0]))

# overload identity I on qc 0
p.define_noisy_gate("I", [0], append_damping_to_gate(np.eye(2), damping_per_I))
cxn.random_seed = int(num_I)
res = cxn.run(p, [0], trials=trials)
results.append([np.mean(res), np.std(res) / np.sqrt(trials)])

results = np.array(results)

0/21, 1/21, 2/21, 3/21, 4/21, 5/21, 6/21, 7/21, 8/21, 9/21, 10/21, 11/21, 12/21, 13/
→˓21, 14/21, 15/21, 16/21, 17/21, 18/21, 19/21, 20/21, CPU times: user 138 ms, sys:
→˓19.2 ms, total: 157 ms
Wall time: 6.4 s

dense_lengths = np.arange(0, lengths.max()+1, .2)
survival_probs = (1-damping_per_I)**dense_lengths
logpmf = binom.logpmf(np.arange(trials+1)[np.newaxis, :], trials, survival_probs[:,
→˓np.newaxis])/np.log(10)

DARK_TEAL = '#48737F'

(continues on next page)
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FUSCHIA = "#D6619E"
BEIGE = '#EAE8C6'
cm = colors.LinearSegmentedColormap.from_list('anglemap', ["white", FUSCHIA, BEIGE],
→˓N=256, gamma=1.5)

plt.figure(figsize=(14, 6))
plt.pcolor(dense_lengths, np.arange(trials+1)/trials, logpmf.T, cmap=cm, vmin=-4,
→˓vmax=logpmf.max())
plt.plot(dense_lengths, survival_probs, c=BEIGE, label="Expected mean")
plt.errorbar(lengths, results[:,0], yerr=2*results[:,1], c=DARK_TEAL,

label=r"noisy qvm, errorbars $ = \pm 2\hat{\sigma}$", marker="o")
cb = plt.colorbar()
cb.set_label(r"$\log_{10} \mathrm{Pr}(n_1; n_{\rm trials}, p_{\rm survival}(t))$",
→˓size=20)

plt.title("Amplitude damping model of a single qubit", size=20)
plt.xlabel(r"Time $t$ [arb. units]", size=14)
plt.ylabel(r"$n_1/n_{\rm trials}$", size=14)
plt.legend(loc="best", fontsize=18)
plt.xlim(*lengths[[0, -1]])
plt.ylim(0, 1)

Example 2: Dephased CZ-gate

Dephasing is usually characterized through a qubit’s 𝑇2 time. For a single qubit the dephasing Kraus operators are

𝐾1(𝑝) =
√︀

1 − 𝑝𝐼2

𝐾2(𝑝) =
√
𝑝𝜎𝑍

where 𝑝 = 1− exp(−𝑇2/𝑇gate) is the probability that the qubit is dephased over the time interval of interest, 𝐼2 is the
2 × 2-identity matrix and 𝜎𝑍 is the Pauli-Z operator.

For two qubits, we must construct a Kraus map that has four different outcomes:
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1. No dephasing

2. Qubit 1 dephases

3. Qubit 2 dephases

4. Both dephase

The Kraus operators for this are given by

𝐾 ′
1(𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾1(𝑞) (1.9)

𝐾 ′
2(𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾1(𝑞) (1.10)

𝐾 ′
3(𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾2(𝑞) (1.11)

𝐾 ′
4(𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾2(𝑞) (1.12)

where we assumed a dephasing probability 𝑝 for the first qubit and 𝑞 for the second.

Dephasing is a diagonal error channel and the CZ gate is also diagonal, therefore we can get the combined map of
dephasing and the CZ gate simply by composing 𝑈CZ the unitary representation of CZ with each Kraus operator

𝐾CZ
1 (𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾1(𝑞)𝑈CZ (1.13)

𝐾CZ
2 (𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾1(𝑞)𝑈CZ(1.14)

𝐾CZ
3 (𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾2(𝑞)𝑈CZ(1.15)

𝐾CZ
4 (𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾2(𝑞)𝑈CZ(1.16)

Note that this is not always accurate, because a CZ gate is often achieved through non-diagonal interaction
Hamiltonians! However, for sufficiently small dephasing probabilities it should always provide a good starting
point.

def dephasing_kraus_map(p=.1):
"""
Generate the Kraus operators corresponding to a dephasing channel.

:params float p: The one-step dephasing probability.
:return: A list [k1, k2] of the Kraus operators that parametrize the map.
:rtype: list
"""
return [np.sqrt(1-p)*np.eye(2), np.sqrt(p)*np.diag([1, -1])]

def tensor_kraus_maps(k1, k2):
"""
Generate the Kraus map corresponding to the composition
of two maps on different qubits.

:param list k1: The Kraus operators for the first qubit.
:param list k2: The Kraus operators for the second qubit.
:return: A list of tensored Kraus operators.
"""
return [np.kron(k1j, k2l) for k1j in k1 for k2l in k2]

def append_kraus_to_gate(kraus_ops, g):
"""
Follow a gate `g` by a Kraus map described by `kraus_ops`.

(continues on next page)
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:param list kraus_ops: The Kraus operators.
:param numpy.ndarray g: The unitary gate.
:return: A list of transformed Kraus operators.
"""
return [kj.dot(g) for kj in kraus_ops]

%%time
# single step damping probabilities
ps = np.linspace(.001, .5, 200)

# number of program executions
trials = 500

results = []

for jj, p in enumerate(ps):

corrupted_CZ = append_kraus_to_gate(
tensor_kraus_maps(

dephasing_kraus_map(p),
dephasing_kraus_map(p)

),
np.diag([1, 1, 1, -1]))

print("{}/{}, ".format(jj, len(ps)), end="")

# make Bell-state
p = Program(H(0), H(1), CZ(0,1), H(1))

p.inst(MEASURE(0, [0]))
p.inst(MEASURE(1, [1]))

# overload identity I on qc 0
p.define_noisy_gate("CZ", [0, 1], corrupted_CZ)
cxn.random_seed = jj
res = cxn.run(p, [0, 1], trials=trials)
results.append(res)

results = np.array(results)

0/200, 1/200, 2/200, 3/200, 4/200, 5/200, 6/200, 7/200, 8/200, 9/200, 10/200, 11/200,
→˓12/200, 13/200, 14/200, 15/200, 16/200, 17/200, 18/200, 19/200, 20/200, 21/200, 22/
→˓200, 23/200, 24/200, 25/200, 26/200, 27/200, 28/200, 29/200, 30/200, 31/200, 32/200,
→˓ 33/200, 34/200, 35/200, 36/200, 37/200, 38/200, 39/200, 40/200, 41/200, 42/200, 43/
→˓200, 44/200, 45/200, 46/200, 47/200, 48/200, 49/200, 50/200, 51/200, 52/200, 53/200,
→˓ 54/200, 55/200, 56/200, 57/200, 58/200, 59/200, 60/200, 61/200, 62/200, 63/200, 64/
→˓200, 65/200, 66/200, 67/200, 68/200, 69/200, 70/200, 71/200, 72/200, 73/200, 74/200,
→˓ 75/200, 76/200, 77/200, 78/200, 79/200, 80/200, 81/200, 82/200, 83/200, 84/200, 85/
→˓200, 86/200, 87/200, 88/200, 89/200, 90/200, 91/200, 92/200, 93/200, 94/200, 95/200,
→˓ 96/200, 97/200, 98/200, 99/200, 100/200, 101/200, 102/200, 103/200, 104/200, 105/
→˓200, 106/200, 107/200, 108/200, 109/200, 110/200, 111/200, 112/200, 113/200, 114/
→˓200, 115/200, 116/200, 117/200, 118/200, 119/200, 120/200, 121/200, 122/200, 123/
→˓200, 124/200, 125/200, 126/200, 127/200, 128/200, 129/200, 130/200, 131/200, 132/
→˓200, 133/200, 134/200, 135/200, 136/200, 137/200, 138/200, 139/200, 140/200, 141/
→˓200, 142/200, 143/200, 144/200, 145/200, 146/200, 147/200, 148/200, 149/200, 150/
→˓200, 151/200, 152/200, 153/200, 154/200, 155/200, 156/200, 157/200, 158/200, 159/
→˓200, 160/200, 161/200, 162/200, 163/200, 164/200, 165/200, 166/200, 167/200, 168/
→˓200, 169/200, 170/200, 171/200, 172/200, 173/200, 174/200, 175/200, 176/200, 177/
→˓200, 178/200, 179/200, 180/200, 181/200, 182/200, 183/200, 184/200, 185/200, 186/
→˓200, 187/200, 188/200, 189/200, 190/200, 191/200, 192/200, 193/200, 194/200, 195/
→˓200, 196/200, 197/200, 198/200, 199/200, CPU times: user 1.17 s, sys: 166 ms,
→˓total: 1.34 s

(continues on next page)
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Wall time: 1min 49s

Z1s = (2*results[:,:,0]-1.)
Z2s = (2*results[:,:,1]-1.)
Z1Z2s = Z1s * Z2s

Z1m = np.mean(Z1s, axis=1)
Z2m = np.mean(Z2s, axis=1)
Z1Z2m = np.mean(Z1Z2s, axis=1)

plt.figure(figsize=(14, 6))
plt.axhline(y=1.0, color=FUSCHIA, alpha=.5, label="Bell state")

plt.plot(ps, Z1Z2m, "x", c=FUSCHIA, label=r"$\overline{Z_1 Z_2}$")
plt.plot(ps, 1-2*ps, "--", c=FUSCHIA, label=r"$\langle Z_1 Z_2\rangle_{\rm theory}$")

plt.plot(ps, Z1m, "o", c=DARK_TEAL, label=r"$\overline{Z}_1$")
plt.plot(ps, 0*ps, "--", c=DARK_TEAL, label=r"$\langle Z_1\rangle_{\rm theory}$")

plt.plot(ps, Z2m, "d", c="k", label=r"$\overline{Z}_2$")
plt.plot(ps, 0*ps, "--", c="k", label=r"$\langle Z_2\rangle_{\rm theory}$")

plt.xlabel(r"Dephasing probability $p$", size=18)
plt.ylabel(r"$Z$-moment", size=18)
plt.title(r"$Z$-moments for a Bell-state prepared with dephased CZ", size=18)
plt.xlim(0, .5)
plt.legend(fontsize=18)

1.7.3 Adding Decoherence Noise

In this example, we investigate how a program might behave on a near-term device that is subject to T1-
and T2-type noise using the convenience function pyquil.noise.add_decoherence_noise(). The
same module also contains some other useful functions to define your own types of noise models, e.g.,
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pyquil.noise.tensor_kraus_maps() for generating multi-qubit noise processes, pyquil.noise.
combine_kraus_maps() for describing the succession of two noise processes and pyquil.noise.
append_kraus_to_gate() which allows appending a noise process to a unitary gate.

from pyquil.quil import Program
from pyquil.paulis import PauliSum, PauliTerm, exponentiate, exponential_map,
→˓trotterize
from pyquil.gates import MEASURE, H, Z, RX, RZ, CZ
import numpy as np

The Task

We want to prepare 𝑒𝑖𝜃𝑋𝑌 and measure it in the 𝑍 basis.

from numpy import pi
theta = pi/3
xy = PauliTerm('X', 0) * PauliTerm('Y', 1)

The Idiomatic PyQuil Program

prog = exponential_map(xy)(theta)
print(prog)

H 0
RX(pi/2) 1
CNOT 0 1
RZ(2*pi/3) 1
CNOT 0 1
H 0
RX(-pi/2) 1

The Compiled Program

To run on a real device, we must compile each program to the native gate set for the device. The high-level noise
model is similarly constrained to use a small, native gate set. In particular, we can use

• 𝐼

• 𝑅𝑍(𝜃)

• 𝑅𝑋(±𝜋/2)

• 𝐶𝑍

For simplicity, the compiled program is given below but generally you will want to use a compiler to do this step for
you.

def get_compiled_prog(theta):
return Program([

RZ(-pi/2, 0),
RX(-pi/2, 0),
RZ(-pi/2, 1),
RX( pi/2, 1),
CZ(1, 0),

(continues on next page)
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RZ(-pi/2, 1),
RX(-pi/2, 1),
RZ(theta, 1),
RX( pi/2, 1),
CZ(1, 0),
RX( pi/2, 0),
RZ( pi/2, 0),
RZ(-pi/2, 1),
RX( pi/2, 1),
RZ(-pi/2, 1),

])

Scan Over Noise Parameters

We perform a scan over three levels of noise each at 20 theta points.

Specifically, we investigate T1 values of 1, 3, and 10 us. By default, T2 = T1 / 2, 1 qubit gates take 50 ns, and 2 qubit
gates take 150 ns.

In alignment with the device, 𝐼 and parametric 𝑅𝑍 are noiseless while 𝑅𝑋 and 𝐶𝑍 gates experience 1q and 2q gate
noise, respectively.

from pyquil.api import QVMConnection
cxn = QVMConnection()

t1s = np.logspace(-6, -5, num=3)
thetas = np.linspace(-pi, pi, num=20)
t1s * 1e6 # us

array([ 1. , 3.16227766, 10. ])

from pyquil.noise import add_decoherence_noise
records = []
for theta in thetas:

for t1 in t1s:
prog = get_compiled_prog(theta)
noisy = add_decoherence_noise(prog, T1=t1).inst([

MEASURE(0, 0),
MEASURE(1, 1),

])
bitstrings = np.array(cxn.run(noisy, [0,1], 1000))

# Expectation of Z0 and Z1
z0, z1 = 1 - 2*np.mean(bitstrings, axis=0)

# Expectation of ZZ by computing the parity of each pair
zz = 1 - (np.sum(bitstrings, axis=1) % 2).mean() * 2

record = {
'z0': z0,
'z1': z1,
'zz': zz,
'theta': theta,
't1': t1,

(continues on next page)
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}
records += [record]

Plot the Results

Note that to run the code below you will need to install the pandas and seaborn packages.

%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
sns.set(style='ticks', palette='colorblind')

import pandas as pd
df_all = pd.DataFrame(records)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12,4))

for t1 in t1s:
df = df_all.query('t1 == @t1')

ax1.plot(df['theta'], df['z0'], 'o-')
ax2.plot(df['theta'], df['z1'], 'o-')
ax3.plot(df['theta'], df['zz'], 'o-', label='T1 = {:.0f} us'.format(t1*1e6))

ax3.legend(loc='best')

ax1.set_ylabel('Z0')
ax2.set_ylabel('Z1')
ax3.set_ylabel('ZZ')
ax2.set_xlabel(r'$\theta$')
fig.tight_layout()

1.7.4 Modeling Readout Noise

Qubit-Readout can be corrupted in a variety of ways. The two most relevant error mechanisms on the Rigetti QPU
right now are:

1. Transmission line noise that makes a 0-state look like a 1-state or vice versa. We call this classical readout
bit-flip error. This type of readout noise can be reduced by tailoring optimal readout pulses and using super-
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conducting, quantum limited amplifiers to amplify the readout signal before it is corrupted by classical noise at
the higher temperature stages of our cryostats.

2. T1 qubit decay during readout (our readout operations can take more than a µsecond unless they have been spe-
cially optimized), which leads to readout signals that initially behave like 1-states but then collapse to something
resembling a 0-state. We will call this T1-readout error. This type of readout error can be reduced by achieving
shorter readout pulses relative to the T1 time, i.e., one can try to reduce the readout pulse length, or increase the
T1 time or both.

Qubit Measurements

This section provides the necessary theoretical foundation for accurately modeling noisy quantum measurements on
superconducting quantum processors. It relies on some of the abstractions (density matrices, Kraus maps) introduced
in our notebook on gate noise models.

The most general type of measurement performed on a single qubit at a single time can be characterized by some set
𝒪 of measurement outcomes, e.g., in the simplest case 𝒪 = {0, 1}, and some unnormalized quantum channels (see
notebook on gate noise models) that encapsulate 1. the probability of that outcome 2. how the qubit state is affected
conditional on the measurement outcome.

Here the outcome is understood as classical information that has been extracted from the quantum system.

Projective, Ideal Measurement

The simplest case that is usually taught in introductory quantum mechanics and quantum information courses are
Born’s rule and the projection postulate which state that there exist a complete set of orthogonal projection operators

𝑃𝒪 := {Π𝑥 Projector | 𝑥 ∈ 𝒪},

i.e., one for each measurement outcome. Any projection operator must satisfy Π†
𝑥 = Π𝑥 = Π2

𝑥 and for an orthogonal
set of projectors any two members satisfy

Π𝑥Π𝑦 = 𝛿𝑥𝑦Π𝑥 =

{︃
0 if 𝑥 ̸= 𝑦

Π𝑥 if 𝑥 = 𝑦

and for a complete set we additionally demand that
∑︀
𝑥∈𝒪 Π𝑥 = 1. Following our introduction to gate noise, we write

quantum states as density matrices as this is more general and in closer correspondence with classical probability
theory.

With these the probability of outcome 𝑥 is given by 𝑝(𝑥) = Π𝑥𝜌Π𝑥 = Π2
𝑥𝜌 = Π𝑥𝜌 and the post measurement state is

𝜌𝑥 =
1

𝑝(𝑥)
Π𝑥𝜌Π𝑥,

which is the projection postulate applied to mixed states.

If we were a sloppy quantum programmer and accidentally erased the measurement outcome then our best guess for
the post measurement state would be given by something that looks an awful lot like a Kraus map:

𝜌post measurement =
∑︁
𝑥∈𝒪

𝑝(𝑥)𝜌𝑥 =
∑︁
𝑥∈𝒪

Π𝑥𝜌Π𝑥.

The completeness of the projector set ensures that the trace of the post measurement is still 1 and the Kraus map form
of this expression ensures that 𝜌post measurement is a positive (semi-)definite operator.
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Classical Readout Bit-Flip Error

Consider now the ideal measurement as above, but where the outcome 𝑥 is transmitted across a noisy classical channel
that produces a final outcome 𝑥′ ∈ 𝒪′ = {0′, 1′} according to some conditional probabilities 𝑝(𝑥′|𝑥) that can be
recorded in the assignment probability matrix

𝑃𝑥′|𝑥 =

(︂
𝑝(0|0) 𝑝(0|1)
𝑝(1|0) 𝑝(1|1)

)︂
Note that this matrix has only two independent parameters as each column must be a valid probability distribution, i.e.
all elements are non-negative and each column sums to 1.

This matrix allows us to obtain the probabilities p′ := (𝑝(𝑥′ = 0), 𝑝(𝑥′ = 1))𝑇 from the original outcome probabilities
p := (𝑝(𝑥 = 0), 𝑝(𝑥 = 1))𝑇 via p′ = 𝑃𝑥′|𝑥p. The difference relative to the ideal case above is that now an outcome
𝑥′ = 0 does not necessarily imply that the post measurement state is truly Π0𝜌Π0/𝑝(𝑥 = 0). Instead, the post
measurement state given a noisy outcome 𝑥′ must be

𝜌𝑥′ =
∑︁
𝑥∈𝒪

𝑝(𝑥|𝑥′)𝜌𝑥

=
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)
𝑝(𝑥)

𝑝(𝑥′)
𝜌𝑥

=
1

𝑝(𝑥′)

∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥𝜌Π𝑥

where

𝑝(𝑥′) =
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)𝑝(𝑥)

=
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥𝜌Π𝑥

= 𝜌
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥

= 𝜌𝐸′
𝑥.

where we have exploited the cyclical property of the trace 𝐴𝐵𝐶 = 𝐵𝐶𝐴 and the projection property Π2
𝑥 = Π𝑥. This

has allowed us to derive the noisy outcome probabilities from a set of positive operators

𝐸𝑥′ :=
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥 ≥ 0

that must sum to 1: ∑︁
𝑥′∈𝒪′

𝐸′
𝑥 =

∑︁
𝑥∈𝒪

[︃ ∑︁
𝑥′∈𝒪′

𝑝(𝑥′|𝑥)

]︃
⏟  ⏞  

1

Π𝑥 =
∑︁
𝑥∈𝒪

Π𝑥 = 1.

The above result is a type of generalized Bayes’ theorem that is extremely useful for this type of (slightly) generalized
measurement and the family of operators {𝐸𝑥′ |𝑥′ ∈ 𝒪′} whose expectations give the probabilities is called a positive
operator valued measure (POVM). These operators are not generally orthogonal nor valid projection operators but
they naturally arise in this scenario. This is not yet the most general type of measurement, but it will get us pretty far.

How to Model 𝑇1 Error

T1 type errors fall outside our framework so far as they involve a scenario in which the quantum state itself is corrupted
during the measurement process in a way that potentially erases the pre-measurement information as opposed to a loss
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of purely classical information. The most appropriate framework for describing this is given by that of measurement
instruments, but for the practical purpose of arriving at a relatively simple description, we propose describing this by
a T1 damping Kraus map followed by the noisy readout process as described above.

Further Reading

Chapter 3 of John Preskill’s lecture notes http://www.theory.caltech.edu/people/preskill/ph229/notes/chap3.pdf

1.7.5 Working with Readout Noise

1. Come up with a good guess for your readout noise parameters 𝑝(0|0) and 𝑝(1|1), the off-diagonals then follow
from the normalization of 𝑃𝑥′|𝑥. If your assignment fidelity 𝐹 is given, and you assume that the classical bit flip
noise is roughly symmetric, then a good approximation is to set 𝑝(0|0) = 𝑝(1|1) = 𝐹 .

2. For your QUIL program p, and a qubit index q call:

p.define_noisy_readout(q, p00, p11)

where you should replace p00 and p11 with the assumed probabilities.

Scroll down for some examples!

from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from pyquil.quil import Program, MEASURE, Pragma
from pyquil.api.qvm import QVMConnection
from pyquil.gates import I, X, RX, H, CNOT
from pyquil.noise import (estimate_bitstring_probs, correct_bitstring_probs,

bitstring_probs_to_z_moments, estimate_assignment_probs)

DARK_TEAL = '#48737F'
FUSCHIA = '#D6619E'
BEIGE = '#EAE8C6'

cxn = QVMConnection()

Example 1: Rabi Sequence with Noisy Readout

%%time

# number of angles
num_theta = 101

# number of program executions
trials = 200

thetas = np.linspace(0, 2*np.pi, num_theta)

p00s = [1., 0.95, 0.9, 0.8]

results_rabi = np.zeros((num_theta, len(p00s)))

(continues on next page)
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for jj, theta in enumerate(thetas):
for kk, p00 in enumerate(p00s):

cxn.random_seed = hash((jj, kk))
p = Program(RX(theta, 0))
# assume symmetric noise p11 = p00
p.define_noisy_readout(0, p00=p00, p11=p00)
p.measure(0, 0)
res = cxn.run(p, [0], trials=trials)
results_rabi[jj, kk] = np.sum(res)

CPU times: user 1.2 s, sys: 73.6 ms, total: 1.27 s
Wall time: 3.97 s

plt.figure(figsize=(14, 6))
for jj, (p00, c) in enumerate(zip(p00s, [DARK_TEAL, FUSCHIA, "k", "gray"])):

plt.plot(thetas, results_rabi[:, jj]/trials, c=c, label=r"$p(0|0)=p(1|1)={:g}$".
→˓format(p00))
plt.legend(loc="best")
plt.xlim(*thetas[[0,-1]])
plt.ylim(-.1, 1.1)
plt.grid(alpha=.5)
plt.xlabel(r"RX angle $\theta$ [radian]", size=16)
plt.ylabel(r"Excited state fraction $n_1/n_{\rm trials}$", size=16)
plt.title("Effect of classical readout noise on Rabi contrast.", size=18)

<matplotlib.text.Text at 0x104314250>

Example 2: Estimate the Assignment Probabilities

Here we will estimate 𝑃𝑥′|𝑥 ourselves! You can run some simple experiments to estimate the assignment probability
matrix directly from a QPU.

On a perfect quantum computer
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estimate_assignment_probs(0, 1000, cxn, Program())

array([[ 1., 0.],
[ 0., 1.]])

On an imperfect quantum computer

cxn.seed = None
header0 = Program().define_noisy_readout(0, .85, .95)
header1 = Program().define_noisy_readout(1, .8, .9)
header2 = Program().define_noisy_readout(2, .9, .85)

ap0 = estimate_assignment_probs(0, 100000, cxn, header0)
ap1 = estimate_assignment_probs(1, 100000, cxn, header1)
ap2 = estimate_assignment_probs(2, 100000, cxn, header2)

print(ap0, ap1, ap2, sep="\n")

[[ 0.84967 0.04941]
[ 0.15033 0.95059]]

[[ 0.80058 0.09993]
[ 0.19942 0.90007]]

[[ 0.90048 0.14988]
[ 0.09952 0.85012]]

Example 3: Correct for Noisy Readout

3a) Correcting the Rabi Signal from Above

ap_last = np.array([[p00s[-1], 1 - p00s[-1]],
[1 - p00s[-1], p00s[-1]]])

corrected_last_result = [correct_bitstring_probs([1-p, p], [ap_last])[1] for p in
→˓results_rabi[:, -1] / trials]

plt.figure(figsize=(14, 6))
for jj, (p00, c) in enumerate(zip(p00s, [DARK_TEAL, FUSCHIA, "k", "gray"])):

if jj not in [0, 3]:
continue

plt.plot(thetas, results_rabi[:, jj]/trials, c=c, label=r"$p(0|0)=p(1|1)={:g}$".
→˓format(p00), alpha=.3)
plt.plot(thetas, corrected_last_result, c="red", label=r"Corrected $p(0|0)=p(1|1)={:g}
→˓$".format(p00s[-1]))
plt.legend(loc="best")
plt.xlim(*thetas[[0,-1]])
plt.ylim(-.1, 1.1)
plt.grid(alpha=.5)
plt.xlabel(r"RX angle $\theta$ [radian]", size=16)
plt.ylabel(r"Excited state fraction $n_1/n_{\rm trials}$", size=16)
plt.title("Corrected contrast", size=18)

<matplotlib.text.Text at 0x1055e7310>
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We find that the corrected signal is fairly noisy (and sometimes exceeds the allowed interval [0, 1]) due to the overall
very small number of samples 𝑛 = 200.

3b) Corrupting and Correcting GHZ State Correlations

In this example we will create a GHZ state 1√
2

[|000⟩ + |111⟩] and measure its outcome probabilities with and without
the above noise model. We will then see how the Pauli-Z moments that indicate the qubit correlations are corrupted
(and corrected) using our API.

ghz_prog = Program(H(0), CNOT(0, 1), CNOT(1, 2),
MEASURE(0, 0), MEASURE(1, 1), MEASURE(2, 2))

print(ghz_prog)
results = cxn.run(ghz_prog, [0, 1, 2], trials=10000)

H 0
CNOT 0 1
CNOT 1 2
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]

header = header0 + header1 + header2
noisy_ghz = header + ghz_prog
print(noisy_ghz)
noisy_results = cxn.run(noisy_ghz, [0, 1, 2], trials=10000)

PRAGMA READOUT-POVM 0 "(0.85 0.050000000000000044 0.15000000000000002 0.95)"
PRAGMA READOUT-POVM 1 "(0.8 0.09999999999999998 0.19999999999999996 0.9)"
PRAGMA READOUT-POVM 2 "(0.9 0.15000000000000002 0.09999999999999998 0.85)"
H 0
CNOT 0 1
CNOT 1 2
MEASURE 0 [0]

(continues on next page)
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MEASURE 1 [1]
MEASURE 2 [2]

Uncorrupted probability for |000⟩ and |111⟩

probs = estimate_bitstring_probs(results)
probs[0, 0, 0], probs[1, 1, 1]

(0.50419999999999998, 0.49580000000000002)

As expected the outcomes 000 and 111 each have roughly probability 1/2.

Corrupted probability for |011⟩ and |100⟩

noisy_probs = estimate_bitstring_probs(noisy_results)
noisy_probs[0, 0, 0], noisy_probs[1, 1, 1]

(0.30869999999999997, 0.3644)

The noise-corrupted outcome probabilities deviate significantly from their ideal values!

Corrected probability for |011⟩ and |100⟩

corrected_probs = correct_bitstring_probs(noisy_probs, [ap0, ap1, ap2])
corrected_probs[0, 0, 0], corrected_probs[1, 1, 1]

(0.50397601453064977, 0.49866843912900716)

The corrected outcome probabilities are much closer to the ideal value.

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 100, 010, 001 from non-noisy data

We expect these to all be very small

zmoments = bitstring_probs_to_z_moments(probs)
zmoments[1, 0, 0], zmoments[0, 1, 0], zmoments[0, 0, 1]

(0.0083999999999999631, 0.0083999999999999631, 0.0083999999999999631)

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 110, 011, 101 from non-noisy data

We expect these to all be close to 1.

zmoments[1, 1, 0], zmoments[0, 1, 1], zmoments[1, 0, 1]
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(1.0, 1.0, 1.0)

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 100, 010, 001 from noise-corrected data

zmoments_corr = bitstring_probs_to_z_moments(corrected_probs)
zmoments_corr[1, 0, 0], zmoments_corr[0, 1, 0], zmoments_corr[0, 0, 1]

(0.0071476770049732075, -0.0078641261685578612, 0.0088462563282706852)

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 110, 011, 101 from noise-corrected data

zmoments_corr[1, 1, 0], zmoments_corr[0, 1, 1], zmoments_corr[1, 0, 1]

(0.99477496902638118, 1.0008376440216553, 1.0149652015905912)

Overall the correction can restore the contrast in our multi-qubit observables, though we also see that the correction
can lead to slightly non-physical expectations. This effect is reduced the more samples we take.

1.8 Advanced Usage

First, initialize a localQVM instance on your laptop. You should have two consoles open in your terminal to run in the
background.

### CONSOLE 1
$ quilc -S
port triggered: 6000.
[2018-09-19 11:22:37] Starting server: 0.0.0.0 : 6000.

### CONSOLE 2
$ qvm -S
Welcome to the Rigetti QVM
(Configured with 2048 MiB of workspace and 8 workers.)
[2018-09-20 15:39:50] Starting server on port 5000.

from pyquil import Program, get_qc
from pyquil.gates import *
qvm = get_qc('9q-square-qvm')

Now that our local endpoints are up and running, we can start running pyQuil programs! Open a jupyter notebook
(type ..code::jupyter notebook in your terminal), or launch python in your terminal (type ..code::python3).

1.8.1 Using Qubit Placeholders

In PyQuil, we typically use integers to identify qubits

from pyquil.quil import Program
from pyquil.gates import CNOT, H
print(Program(H(0), CNOT(0, 1)))
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H 0
CNOT 0 1

However, when running on real, near-term QPUs we care about what particular physical qubits our program will
run on. In fact, we may want to run the same program on an assortment of different qubits. This is where using
QubitPlaceholders comes in.

from pyquil.quilatom import QubitPlaceholder
q0 = QubitPlaceholder()
q1 = QubitPlaceholder()
prog = Program(H(q0), CNOT(q0, q1))
print(prog)

H {q4402789176}
CNOT {q4402789176} {q4402789120}

If you try to use this program directly, it will not work

print(prog.out())

---------------------------------------------------------------------------

RuntimeError Traceback (most recent call last)

<ipython-input-3-da474d3af403> in <module>()
----> 1 print(prog.out())

...

pyquil/pyquil/quilatom.py in out(self)
53 class QubitPlaceholder(QuilAtom):
54 def out(self):

---> 55 raise RuntimeError("Qubit {} has not been assigned an index".
→˓format(self))

56
57 def __str__(self):

RuntimeError: Qubit q4402789176 has not been assigned an index

Instead, you must explicitly map the placeholders to physical qubits. By default, the function address_qubits
will address qubits from 0 to N.

from pyquil.quil import address_qubits
print(address_qubits(prog))

H 0
CNOT 0 1

The real power comes into play when you provide an explicit mapping

print(address_qubits(prog, qubit_mapping={
q0: 14,
q1: 19,

}))
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H 14
CNOT 14 19

Register

Usually, your algorithm will use an assortment of qubits. You can use the convenience function
QubitPlaceholder.register() to request a list of qubits to build your program.

qbyte = QubitPlaceholder.register(8)
prog2 = Program(H(q) for q in qbyte)
print(address_qubits(prog2, {q: i*2 for i, q in enumerate(qbyte)}))

H 0
H 2
H 4
H 6
H 8
H 10
H 12
H 14

1.8.2 Quantum Fourier Transform (QFT)

Let us do an example that includes multi-qubit parameterized gates.

Here we wish to compute the discrete Fourier transform of [0, 1, 0, 0, 0, 0, 0, 0]. We do this in three
steps:

1. Write a function called qft3 to make a 3-qubit QFT quantum program.

2. Write a state preparation quantum program.

3. Execute state preparation followed by the QFT on the QVM.

First we define a function to make a 3-qubit QFT quantum program. This is a mix of Hadamard and CPHASE gates,
with a final bit reversal correction at the end consisting of a single SWAP gate.

from math import pi

def qft3(q0, q1, q2):
p = Program()
p.inst( H(q2),

CPHASE(pi/2.0, q1, q2),
H(q1),
CPHASE(pi/4.0, q0, q2),
CPHASE(pi/2.0, q0, q1),
H(q0),
SWAP(q0, q2) )

return p

There is a very important detail to recognize here: The function qft3 doesn’t compute the QFT, but rather it makes a
quantum program to compute the QFT on qubits q0, q1, and q2.

We can see what this program looks like in Quil notation by doing the following:
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print(qft3(0, 1, 2))

H 2
CPHASE(1.5707963267948966) 1 2
H 1
CPHASE(0.7853981633974483) 0 2
CPHASE(1.5707963267948966) 0 1
H 0
SWAP 0 2

Next, we want to prepare a state that corresponds to the sequence we want to compute the discrete Fourier transform
of. Fortunately, this is easy, we just apply an 𝑋-gate to the zeroth qubit.

state_prep = Program().inst(X(0))

We can verify that this works by computing its wavefunction. However, we need to add some “dummy” qubits,
because otherwise wavefunction would return a two-element vector.

add_dummy_qubits = Program().inst(I(1), I(2))
wavefunction = qvm.wavefunction(state_prep + add_dummy_qubits)
print(wavefunction)

(1+0j)|001>

If we have two quantum programs a and b, we can concatenate them by doing a + b. Using this, all we need to do
is compute the QFT after state preparation to get our final result.

wavefunction = qvm.wavefunction(state_prep + qft3(0, 1, 2))
print(wavefunction.amplitudes)

array([ 3.53553391e-01+0.j , 2.50000000e-01+0.25j ,
2.16489014e-17+0.35355339j, -2.50000000e-01+0.25j ,
-3.53553391e-01+0.j , -2.50000000e-01-0.25j ,
-2.16489014e-17-0.35355339j, 2.50000000e-01-0.25j ])

We can verify this works by computing the (inverse) FFT from NumPy.

from numpy.fft import ifft
ifft([0,1,0,0,0,0,0,0], norm="ortho")

array([ 0.35355339+0.j , 0.25000000+0.25j ,
0.00000000+0.35355339j, -0.25000000+0.25j ,

-0.35355339+0.j , -0.25000000-0.25j ,
0.00000000-0.35355339j, 0.25000000-0.25j ])

1.8.3 Classical Control Flow

Here are a couple quick examples that show how much richer the classical control of a Quil program can be. In this first
example, we have a register called classical_flag_register which we use for looping. Then we construct
the loop in the following steps:

1. We first initialize this register to 1 with the init_register program so our while loop will execute. This is
often called the loop preamble or loop initialization.
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2. Next, we write body of the loop in a program itself. This will be a program that computes an 𝑋 followed by an
𝐻 on our qubit.

3. Lastly, we put it all together using the while_do method.

# Name our classical registers:
classical_flag_register = 2

# Write out the loop initialization and body programs:
init_register = Program(TRUE([classical_flag_register]))
loop_body = Program(X(0), H(0)).measure(0, classical_flag_register)

# Put it all together in a loop program:
loop_prog = init_register.while_do(classical_flag_register, loop_body)

print(loop_prog)

TRUE [2]
LABEL @START1
JUMP-UNLESS @END2 [2]
X 0
H 0
MEASURE 0 [2]
JUMP @START1
LABEL @END2

Notice that the init_register program applied a Quil instruction directly to a classical register. There are several
classical commands that can be used in this fashion:

• TRUE which sets a single classical bit to be 1

• FALSE which sets a single classical bit to be 0

• NOT which flips a classical bit

• AND which operates on two classical bits

• OR which operates on two classical bits

• MOVE which moves the value of a classical bit at one classical address into another

• EXCHANGE which swaps the value of two classical bits

In this next example, we show how to do conditional branching in the form of the traditional if construct as in many
programming languages. Much like the last example, we construct programs for each branch of the if, and put it all
together by using the if_then method.

# Name our classical registers:
test_register = 1
answer_register = 0

# Construct each branch of our if-statement. We can have empty branches
# simply by having empty programs.
then_branch = Program(X(0))
else_branch = Program()

# Make a program that will put a 0 or 1 in test_register with 50% probability:
branching_prog = Program(H(1)).measure(1, test_register)

# Add the conditional branching:

(continues on next page)
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branching_prog.if_then(test_register, then_branch, else_branch)

# Measure qubit 0 into our answer register:
branching_prog.measure(0, answer_register)

print(branching_prog)

H 1
MEASURE 1 [1]
JUMP-WHEN @THEN3 [1]
JUMP @END4
LABEL @THEN3
X 0
LABEL @END4
MEASURE 0 [0]

We can run this program a few times to see what we get in the answer_register.

qvm.run(branching_prog, [answer_register], 10)

[[1], [1], [1], [0], [1], [0], [0], [1], [1], [0]]

1.8.4 Parametric Depolarizing Noise

The Rigetti QVM has support for emulating certain types of noise models. One such model is parametric Pauli noise,
which is defined by a set of 6 probabilities:

• The probabilities 𝑃𝑋 , 𝑃𝑌 , and 𝑃𝑍 which define respectively the probability of a Pauli 𝑋 , 𝑌 , or 𝑍 gate getting
applied to each qubit after every gate application. These probabilities are called the gate noise probabilities.

• The probabilities 𝑃 ′
𝑋 , 𝑃 ′

𝑌 , and 𝑃 ′
𝑍 which define respectively the probability of a Pauli 𝑋 , 𝑌 , or 𝑍 gate getting

applied to the qubit being measured before it is measured. These probabilities are called the measurement noise
probabilities.

We can instantiate a noisy QVM by creating a new connection with these probabilities specified.

# 20% chance of a X gate being applied after gate applications and before
→˓measurements.
gate_noise_probs = [0.2, 0.0, 0.0]
meas_noise_probs = [0.2, 0.0, 0.0]
noisy_qvm = qvm(gate_noise=gate_noise_probs, measurement_noise=meas_noise_probs)

We can test this by applying an 𝑋-gate and measuring. Nominally, we should always measure 1.

p = Program().inst(X(0)).measure(0, 0)
print("Without Noise: {}".format(qvm.run(p, [0], 10)))
print("With Noise : {}".format(noisy_qvm.run(p, [0], 10)))

Without Noise: [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]
With Noise : [[0], [0], [0], [0], [0], [1], [1], [1], [1], [0]]

1.8.5 Parametric Programs

In PyQuil 1.x, there was an object named ParametricProgram:
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# This function returns a quantum circuit with different rotation angles on a gate on
→˓qubit 0
def rotator(angle):

return Program(RX(angle, 0))

from pyquil.parametric import ParametricProgram
par_p = ParametricProgram(rotator) # This produces a new type of parameterized
→˓program object

This object has been removed from PyQuil 2. Please consider simply using a Python function for the above function-
ality:

par_p = rotator

Or using declared classical memory:

p = Program()
angle = p.declare('angle', 'REAL')
p += RX(angle, 0)

1.8.6 Pauli Operator Algebra

Many algorithms require manipulating sums of Pauli combinations, such as 𝜎 = 1
2𝐼 −

3
4𝑋0𝑌1𝑍3 + (5 − 2𝑖)𝑍1𝑋2,

where 𝐺𝑛 indicates the gate 𝐺 acting on qubit 𝑛. We can represent such sums by constructing PauliTerm and
PauliSum. The above sum can be constructed as follows:

from pyquil.paulis import ID, sX, sY, sZ

# Pauli term takes an operator "X", "Y", "Z", or "I"; a qubit to act on, and
# an optional coefficient.
a = 0.5 * ID
b = -0.75 * sX(0) * sY(1) * sZ(3)
c = (5-2j) * sZ(1) * sX(2)

# Construct a sum of Pauli terms.
sigma = a + b + c
print("sigma = {}".format(sigma))

sigma = 0.5*I + -0.75*X0*Y1*Z3 + (5-2j)*Z1*X2

Right now, the primary thing one can do with Pauli terms and sums is to construct the exponential of the Pauli term,
i.e., exp[−𝑖𝛽𝜎]. This is accomplished by constructing a parameterized Quil program that is evaluated when passed
values for the coefficients of the angle 𝛽.

Related to exponentiating Pauli sums we provide utility functions for finding the commuting subgroups of a Pauli sum
and approximating the exponential with the Suzuki-Trotter approximation through fourth order.

When arithmetic is done with Pauli sums, simplification is automatically done.

The following shows an instructive example of all three.

import pyquil.paulis as pl

# Simplification
sigma_cubed = sigma * sigma * sigma

(continues on next page)
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print("Simplified : {}".format(sigma_cubed))
print()

#Produce Quil code to compute exp[iX]
H = -1.0 * sX(0)
print("Quil to compute exp[iX] on qubit 0:")
print(pl.exponential_map(H)(1.0))

Simplified : (32.46875-30j)*I + (-16.734375+15j)*X0*Y1*Z3 + (71.5625-144.625j)*Z1*X2

Quil to compute exp[iX] on qubit 0:
H 0
RZ(-2.0) 0
H 0

exponential_map returns a function allowing you to fill in a multiplicative constant later. This commonly occurs
in variational algorithms. The function exponential_map is used to compute exp[-i * alpha * H] without explicitly
filling in a value for alpha.

expH = pl.exponential_map(H)
print(expH(0.0))
print(expH(1.0))
print(expH(2.0))

1.9 Exercises

1.9.1 Exercise 1: Quantum Dice

Write a quantum program to simulate throwing an 8-sided die. The Python function you should produce is:

def throw_octahedral_die():
# return the result of throwing an 8 sided die, an int between 1 and 8, by

→˓running a quantum program

Next, extend the program to work for any kind of fair die:

def throw_polyhedral_die(num_sides):
# return the result of throwing a num_sides sided die by running a quantum program

1.9.2 Exercise 2: Controlled Gates

We can use the full generality of NumPy to construct new gate matrices.

1. Write a function controlled which takes a 2× 2 matrix 𝑈 representing a single qubit operator, and makes a
4 × 4 matrix which is a controlled variant of 𝑈 , with the first argument being the control qubit.

2. Write a Quil program to define a controlled-𝑌 gate in this manner. Find the wavefunction when applying this
gate to qubit 1 controlled by qubit 0.

1.9.3 Exercise 3: Grover’s Algorithm

Write a quantum program for the single-shot Grover’s algorithm. The Python function you should produce is:
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# data is an array of 0's and 1's such that there are exactly three times as many
# 0's as 1's
def single_shot_grovers(data):

# return an index that contains the value 1

As an example: single_shot_grovers([0,0,1,0]) should return 2.

HINT - Remember that the Grover’s diffusion operator is:⎛⎜⎜⎜⎝
2/𝑁 − 1 2/𝑁 · · · 2/𝑁

2/𝑁
...

. . .
2/𝑁 2/𝑁 − 1

⎞⎟⎟⎟⎠

1.10 Source Code Documentation

1.10.1 pyquil.api

Module for facilitating connections to the QVM / QPU.

class pyquil.api.QVMConnection(device=None, endpoint=None, gate_noise=None, mea-
surement_noise=None, random_seed=None, com-
piler_endpoint=None)

Bases: object

Represents a connection to the QVM.

expectation(prep_prog, operator_programs=None)
Calculate the expectation value of operators given a state prepared by prep_program.

Note If the execution of quil_program is non-deterministic, i.e., if it includes measure-
ments and/or noisy quantum gates, then the final wavefunction from which the expectation
values are computed itself only represents a stochastically generated sample. The expecta-
tions returned from different expectation calls will then generally be different.

To measure the expectation of a PauliSum, you probably want to do something like this:

progs, coefs = hamiltonian.get_programs()
expect_coeffs = np.array(cxn.expectation(prep_program, operator_
→˓programs=progs))
return np.real_if_close(np.dot(coefs, expect_coeffs))

Parameters

• prep_prog (Program) – Quil program for state preparation.

• operator_programs (list) – A list of Programs, each specifying an operator whose
expectation to compute. Default is a list containing only the empty Program.

Returns Expectation values of the operators.

Return type List[float]

get_version_info()
Return version information for the QVM.

Returns Dictionary with version information
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pauli_expectation(prep_prog, pauli_terms)
Calculate the expectation value of Pauli operators given a state prepared by prep_program.

If pauli_terms is a PauliSum then the returned value is a single float, otherwise the returned value
is a list of float``s, one for each ``PauliTerm in the list.

Note If the execution of quil_program is non-deterministic, i.e., if it includes measure-
ments and/or noisy quantum gates, then the final wavefunction from which the expectation
values are computed itself only represents a stochastically generated sample. The expecta-
tions returned from different expectation calls will then generally be different.

Parameters

• prep_prog (Program) – Quil program for state preparation.

• pauli_terms (Sequence[PauliTerm]|PauliSum) – A list of PauliTerms or a
PauliSum.

Returns If pauli_terms is a PauliSum return its expectation value. Otherwise return a list of
expectation values.

Return type float|List[float]

run(quil_program, classical_addresses: List[int] = None, trials=1)
Run a Quil program multiple times, accumulating the values deposited in a list of classical addresses.

Parameters

• quil_program (Program) – A Quil program.

• classical_addresses – The classical memory to retrieve. Specified as a list of
integers that index into a readout register named ro. This function–and particularly this
argument–are included for backwards compatibility and will be removed in the future.

• trials (int) – Number of shots to collect.

Returns A list of dictionaries of bits. Each dictionary corresponds to the values in classi-
cal_addresses.

Return type list

run_and_measure(quil_program, qubits, trials=1)
Run a Quil program once to determine the final wavefunction, and measure multiple times.

Note If the execution of quil_program is non-deterministic, i.e., if it includes measure-
ments and/or noisy quantum gates, then the final wavefunction from which the returned bit-
strings are sampled itself only represents a stochastically generated sample and the outcomes
sampled from different run_and_measure calls generally sample different bitstring dis-
tributions.

Parameters

• quil_program (Program) – A Quil program.

• qubits (list|range) – A list of qubits.

• trials (int) – Number of shots to collect.

Returns A list of a list of bits.

Return type list

wavefunction(quil_program)
Simulate a Quil program and get the wavefunction back.
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Note If the execution of quil_program is non-deterministic, i.e., if it includes measure-
ments and/or noisy quantum gates, then the final wavefunction from which the returned
bitstrings are sampled itself only represents a stochastically generated sample and the wave-
functions returned by different wavefunction calls will generally be different.

Parameters quil_program (Program) – A Quil program.

Returns A Wavefunction object representing the state of the QVM.

Return type Wavefunction

class pyquil.api.LocalQVMCompiler(endpoint: str, device: pyquil.device.AbstractDevice)
Bases: pyquil.api._qac.AbstractCompiler

get_version_info()→ dict
Return version information for this compiler and its dependencies.

Returns Dictionary of version information.

native_quil_to_executable(nq_program: pyquil.quil.Program)
Compile a native quil program to a binary executable.

Parameters nq_program – Native quil to compile

Returns An (opaque) binary executable

quil_to_native_quil(program: pyquil.quil.Program)→ pyquil.quil.Program
Compile an arbitrary quil program according to the ISA of target_device.

Parameters program – Arbitrary quil to compile

Returns Native quil and compiler metadata

class pyquil.api.QVMCompiler(endpoint: str, device: pyquil.device.AbstractDevice)
Bases: pyquil.api._qac.AbstractCompiler

get_version_info()→ dict
Return version information for this compiler and its dependencies.

Returns Dictionary of version information.

native_quil_to_executable(nq_program: pyquil.quil.Program) →
rpcq.messages.PyQuilExecutableResponse

Compile a native quil program to a binary executable.

Parameters nq_program – Native quil to compile

Returns An (opaque) binary executable

quil_to_native_quil(program: pyquil.quil.Program)→ pyquil.quil.Program
Compile an arbitrary quil program according to the ISA of target_device.

Parameters program – Arbitrary quil to compile

Returns Native quil and compiler metadata

class pyquil.api.QPUCompiler(endpoint: str, device: pyquil.device.AbstractDevice)
Bases: pyquil.api._qac.AbstractCompiler

get_version_info()→ dict
Return version information for this compiler and its dependencies.

Returns Dictionary of version information.

native_quil_to_executable(nq_program: pyquil.quil.Program) →
rpcq.messages.BinaryExecutableResponse

Compile a native quil program to a binary executable.

64 Chapter 1. Contents



pyQuil Documentation, Release 2.0.0

Parameters nq_program – Native quil to compile

Returns An (opaque) binary executable

quil_to_native_quil(program: pyquil.quil.Program)→ pyquil.quil.Program
Compile an arbitrary quil program according to the ISA of target_device.

Parameters program – Arbitrary quil to compile

Returns Native quil and compiler metadata

class pyquil.api.Job(raw, machine)
Bases: object

Represents the current status of a Job in the Forest queue.

Job statuses are initially QUEUED when QVM/QPU resources are not available They transition to RUNNING
when they have been started Finally they are marked as FINISHED, ERROR, or CANCELLED once completed

compiled_quil()
If the Quil program associated with the Job was compiled (e.g., to translate it to the QPU’s natural gateset)
return this compiled program.

Return type Optional[Program]

decode()

estimated_time_left_in_queue()
If the job is queued, this will return how much time left (in seconds) is estimated before execution.

gate_depth()
If the job has metadata and this contains the gate depth, return this, otherwise None. The gate depth is a
measure of how long a quantum program takes. On a non-fault-tolerant QPU programs with a low gate
depth have a higher chance of succeeding.

Return type Optional[int]

gate_volume()
If the job has metadata and this contains the gate volume, return this, otherwise None. On a non-fault-
tolerant QPU programs with a low gate volume have a higher chance of succeeding. This is a less sensitive
measure than gate depth.

Return type Optional[int]

get()

is_compiling()
Is the job actively compiling?

is_done()
Has the job completed yet?

is_queued()
Is the job still in the Forest queue?

is_queued_for_compilation()
Is the job still in the Forest compilation queue?

is_running()
Is the job currently running?

job_id
Job id :rtype: str
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multiqubit_gate_depth()
If the job has metadata and this contains the multiqubit gate depth, return this, otherwise None. The mul-
tiqubit gate depth is a measure of how inaccurately a quantum program will behave on nonideal hardware.
On a non-fault-tolerant QPU programs with a low gate depth have a higher chance of succeeding.

Return type Optional[int]

position_in_queue()
If the job is queued, this will return how many other jobs are ahead of it. If the job is not queued, this will
return None

program_fidelity()
If the job has metadata and this contains a job program fidelity estimate, return this, otherwise None. This
is a number between 0 and 1; a higher value means more likely odds of a meaningful answer.

Return type Optional[float]

result()
The result of the job if available throws ValueError is result is not available yet throws ApiError if server
returned an error indicating program execution was not successful or if the job was cancelled

running_time()
For how long was the job running? :return: Running time, seconds :rtype: Optional[float]

time_in_queue()
For how long was the job in the Forest queue? :return: Time in queue, seconds :rtype: Optional[float]

topological_swaps()
If the program could not be mapped directly to the QPU because of missing links in the two-qubit gate
connectivity graph, the compiler must insert topological swap gates. Return the number of such topological
swaps.

Return type Optional[int]

class pyquil.api.Device(name, raw)
Bases: pyquil.device.AbstractDevice

A device (quantum chip) that can accept programs.

Only devices that are online will actively be accepting new programs. In addition to the self._raw attribute,
two other attributes are optionally constructed from the entries in self._raw – isa and noise_model
– which should conform to the dictionary format required by the .from_dict() methods for ISA and
NoiseModel, respectively.

Variables

• _raw (dict) – Raw JSON response from the server with additional information about the
device.

• isa (ISA) – The instruction set architecture (ISA) for the device.

• noise_model (NoiseModel) – The noise model for the device.

get_isa(oneq_type=’Xhalves’, twoq_type=’CZ’)→ pyquil.device.ISA
Construct an ISA suitable for targeting by compilation.

This will raise an exception if the requested ISA is not supported by the device.

Parameters

• oneq_type – The family of one-qubit gates to target

• twoq_type – The family of two-qubit gates to target
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get_specs()
Construct a Specs object required by compilation

isa

qubit_topology()→ networkx.classes.graph.Graph
The connectivity of qubits in this device given as a NetworkX graph.

qubits()
A sorted list of qubits in the device topology.

class pyquil.api.ForestConnection(sync_endpoint=None, compiler_endpoint=None, for-
est_cloud_endpoint=None)

Bases: object

pyquil.api.pyquil_protect(func, log_filename=’pyquil_error.log’)
A decorator that sets up an error context, captures errors, and tears down the context.

class pyquil.api.WavefunctionSimulator(connection: pyquil.api._base_connection.ForestConnection
= None, random_seed: Optional[int] = None)

Bases: object

expectation(prep_prog: pyquil.quil.Program, pauli_terms: Union[pyquil.paulis.PauliSum,
List[pyquil.paulis.PauliTerm]])→ Union[float, numpy.ndarray]

Calculate the expectation value of Pauli operators given a state prepared by prep_program.

If pauli_terms is a PauliSum then the returned value is a single float, otherwise the returned value
is an array of values, one for each PauliTerm in the list.

Note: If your program contains measurements or noisy gates, this method may not do what you want.
If the execution of quil_program is non-deterministic then the final wavefunction from which the
expectation value is calculated only represents a stochastically generated sample and the wavefunctions
returned by different wavefunction calls will generally be different.

Parameters

• prep_prog – A program that prepares the state on which we measure the expectation.

• pauli_terms – A Pauli representation of a quantum operator.

Returns Either a float or array floats depending on pauli_terms.

run_and_measure(quil_program: pyquil.quil.Program, qubits: List[int] = None, trials: int = 1) →
numpy.ndarray

Run a Quil program once to determine the final wavefunction, and measure multiple times.

Alternatively, consider using wavefunction and calling sample_bitstrings on the resulting ob-
ject.

For a large wavefunction and a low-medium number of trials, use this function. On the other hand, if you’re
sampling a small system many times you might want to use Wavefunction.sample_bitstrings.

Note: If your program contains measurements or noisy gates, this method may not do what you want.
If the execution of quil_program is non-deterministic then the final wavefunction from which the
returned bitstrings are sampled itself only represents a stochastically generated sample and the outcomes
sampled from different run_and_measure calls generally sample different bitstring distributions.

Parameters
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• quil_program – The program to run and measure

• qubits – An optional list of qubits to measure. The order of this list is respected in the
returned bitstrings. If not provided, all qubits used in the program will be measured and
returned in their sorted order.

• trials (int) – Number of times to sample from the prepared wavefunction.

Returns An array of measurement results (0 or 1) of shape (trials, len(qubits))

wavefunction(quil_program: pyquil.quil.Program)→ pyquil.wavefunction.Wavefunction
Simulate a Quil program and return the wavefunction.

Note: If your program contains measurements or noisy gates, this method may not do what you want.
If the execution of quil_program is non-deterministic then the final wavefunction only represents a
stochastically generated sample and the wavefunctions returned by different wavefunction calls will
generally be different.

Parameters quil_program – A Quil program.

Returns A Wavefunction object representing the state of the QVM.

class pyquil.api.QuantumComputer(*, name: str, qam: pyquil.api._qam.QAM, de-
vice: pyquil.device.AbstractDevice, compiler:
pyquil.api._qac.AbstractCompiler, symmetrize_readout:
bool = False)

Bases: object

compile(program: pyquil.quil.Program, to_native_gates: bool = True, optimize: bool = True) →
rpcq._base.Message

get_isa(oneq_type: str = ’Xhalves’, twoq_type: str = ’CZ’)→ pyquil.device.ISA

qubit_topology() → <module ’networkx.classes.graph’ from
’/home/docs/checkouts/readthedocs.org/user_builds/pyquil/envs/v2.0.0/lib/python3.6/site-
packages/networkx/classes/graph.py’>

qubits()→ List[int]

run(executable: Union[rpcq.messages.BinaryExecutableResponse, rpcq.messages.PyQuilExecutableResponse])
→ numpy.ndarray
Run a quil executable.

Parameters executable – The program to run. You are responsible for compiling this first.

Returns A numpy array of shape (trials, len(ro-register)) that contains 0s and 1s

run_and_measure(program: pyquil.quil.Program, trials: int)→ Dict[int, numpy.ndarray]
Run the provided state preparation program and measure all qubits.

This will measure all the qubits on this QuantumComputer, not just qubits that are used in the program.

The returned data is a dictionary keyed by qubit index because qubits for a given QuantumComputer may
be non-contiguous and non-zero-indexed. To turn this dictionary into a 2d numpy array of bitstrings,
consider:

bitstrings = qc.run_and_measure(...)
bitstring_array = np.vstack(bitstrings[q] for q in sorted(qc.qubits())).T
bitstring_array.shape # (trials, len(qc.qubits()))
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Note: In contrast to QVMConnection.run_and_measure, this method simulates noise correctly
for noisy QVMs. However, this method is slower for trials > 1. For faster noise-free simulation,
consider WavefunctionSimulator.run_and_measure.

Parameters

• program – The state preparation program to run and then measure.

• trials – The number of times to run the program.

Returns A dictionary keyed by qubit index where the corresponding value is a 1D array of
measured bits.

run_symmetrized_readout(program: pyquil.quil.Program, trials: int)→ numpy.ndarray
Run a quil program in such a way that the readout error is made collectively symmetric

This means the probability of a bitstring b being mistaken for a bitstring c is the same as the probability
of not(b) being mistaken for not(c)

A more general symmetrization would guarantee that the probability of b being mistaken for c depends
only on which bit of c are different from b. This would require choosing random subsets of bits to flip.

In a noisy device, the probability of accurately reading the 0 state might be higher than that of the 1 state.
This makes correcting for readout more difficult. This function runs the program normally (trials//
2) times. The other half of the time, it will insert an X gate prior to any MEASURE instruction and then
flip the measured classical bit back.

See run() for this function’s parameter descriptions.

pyquil.api.list_quantum_computers(connection: pyquil.api._base_connection.ForestConnection
= None, qpus: bool = True, qvms: bool = True)→ List[str]

List the names of available quantum computers

Parameters

• connection – An optional :py:class:ForestConnection‘ object. If not specified, the
default values for URL endpoints will be used, and your API key will be read from
~/.pyquil_config. If you deign to change any of these parameters, pass your own
ForestConnection object.

• qpus – Whether to include QPU’s in the list.

• qvms – Whether to include QVM’s in the list.

pyquil.api.get_qc(name: str, *, as_qvm: bool = None, noisy: bool = None, con-
nection: pyquil.api._base_connection.ForestConnection = None) →
pyquil.api._quantum_computer.QuantumComputer

Get a quantum computer.

A quantum computer is an object of type QuantumComputer and can be backed either by a QVM simulator
(“Quantum/Quil Virtual Machine”) or a physical Rigetti QPU (“Quantum Processing Unit”) made of supercon-
ducting qubits.

You can choose the quantum computer to target through a combination of its name and optional flags. There are
multiple ways to get the same quantum computer. The following are equivalent:

>>> qc = get_qc("Aspen-0-12Q-A-noisy-qvm")
>>> qc = get_qc("Aspen-0-12Q-A", as_qvm=True, noisy=True)
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and will construct a simulator of the 8q-agave chip with a noise model based on device characteristics. We also
provide a means for constructing generic quantum simulators that are not related to a given piece of Rigetti
hardware:

>>> qc = get_qc("9q-square-qvm")
>>> qc = get_qc("9q-square", as_qvm=True)

Finally, you can get request a QVM with “no” topology of a given number of qubits (technically, it’s a fully
connected graph among the given number of qubits) with:

>>> qc = get_qc("5q-qvm") # or "6q-qvm", or "34q-qvm", ...

These less-realistic, fully-connected QVMs will also be more lenient on what types of programs they will
run. Specifically, you do not need to do any compilation. For the other, realistic QVMs you must use qc.
compile() or qc.compiler.native_quil_to_executable() prior to qc.run().

Redundant flags are acceptable, but conflicting flags will raise an exception:

>>> qc = get_qc("9q-square-qvm") # qc is fully specified by its name
>>> qc = get_qc("9q-square-qvm", as_qvm=True) # redundant, but ok
>>> qc = get_qc("9q-square-qvm", as_qvm=False) # Error!

Use list_quantum_computers() to retrieve a list of known qc names.

This method is provided as a convenience to quickly construct and use QVM’s and QPU’s. Power users may
wish to have more control over the specification of a quantum computer (e.g. custom noise models, bespoke
topologies, etc.). This is possible by constructing a QuantumComputer object by hand. Please refer to the
documentation on QuantumComputer for more information.

Parameters

• name – The name of the desired quantum computer. This should correspond to a name
returned by list_quantum_computers(). Names ending in “-qvm” will return a
QVM. Names ending in “-noisy-qvm” will return a QVM with a noise model. Otherwise,
we will return a QPU with the given name.

• as_qvm – An optional flag to force construction of a QVM (instead of a QPU). If speci-
fied and set to True, a QVM-backed quantum computer will be returned regardless of the
name’s suffix

• noisy – An optional flag to force inclusion of a noise model. If specified and set to True,
a quantum computer with a noise model will be returned regardless of the name’s suffix.
The noise model for QVM’s based on a real QPU is an empirically parameterized model
based on real device noise characteristics. The generic QVM noise model is simple T1 and
T2 noise plus readout error. See decoherance_noise_with_asymmetric_ro().

• connection – An optional :py:class:ForestConnection‘ object. If not specified, the de-
fault values for URL endpoints, ping time, and status time will be used. Your user id and
API key will be read from ~/.pyquil_config. If you deign to change any of these parameters,
pass your own ForestConnection object.

Returns

class pyquil.api.QAM
Bases: abc.ABC

The platonic ideal of this class is as a generic interface describing how a classical computer interacts with a live
quantum computer. Eventually, it will turn into a thin layer over the QPU and QVM’s “QPI” interfaces.
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The reality is that neither the QPU nor the QVM currently support a full-on QPI interface, and so the undignified
job of this class is to collect enough state that it can convincingly pretend to be a QPI-compliant quantum
computer.

load(executable)
Initialize a QAM into a fresh state.

Parameters executable – Load a compiled executable onto the QAM.

read_from_memory_region(*, region_name: str)
Reads from a memory region named region_name on the QAM.

This is a shim over the eventual API and only can return memory from a region named “ro” of type BIT.

Parameters region_name – The string naming the declared memory region.

Returns A list of values of the appropriate type.

read_memory(*, region_name: str)
Reads from a memory region named region_name on the QAM.

This is a shim over the eventual API and only can return memory from a region named “ro” of type BIT.

Parameters region_name – The string naming the declared memory region.

Returns A list of values of the appropriate type.

run()
Reset the program counter on a QAM and run its loaded Quil program.

wait()
Blocks until the QPU enters the halted state.

write_memory(*, region_name: str, offset: int = 0, value=None)
Writes a value into a memory region on the QAM at a specified offset.

Parameters

• region_name – Name of the declared memory region on the QAM.

• offset – Integer offset into the memory region to write to.

• value – Value to store at the indicated location.

class pyquil.api.QVM(connection: pyquil.api._base_connection.ForestConnection,
noise_model=None, gate_noise=None, measurement_noise=None, ran-
dom_seed=None, requires_executable=False)

Bases: pyquil.api._qam.QAM

augment_program_with_memory_values(quil_program)

get_version_info()
Return version information for the QVM.

Returns Dictionary with version information

load(executable)
Initialize a QAM and load a program to be executed with a call to run().

If QVM.requires_executable is set to True, this function will only load
PyQuilExecutableResponse executables. This more closely follows the behavior of QPU .
However, the quantum simulator doesn’t actually need a compiled binary executable, so if this flag is set
to False we also accept Program objects.

Parameters executable – An executable. See the above note for acceptable types.

1.10. Source Code Documentation 71



pyQuil Documentation, Release 2.0.0

run()
Run a Quil program on the QVM multiple times and return the values stored in the classical registers
designated by the classical_addresses parameter.

Returns An array of bitstrings of shape (trials, len(classical_addresses))

class pyquil.api.QPU(endpoint: str, user: str = ’pyquil-user’)
Bases: pyquil.api._qam.QAM

get_version_info()→ dict
Return version information for this QPU’s execution engine and its dependencies.

Returns Dictionary of version information.

run()
Run a pyquil program on the QPU.

This formats the classified data from the QPU server by stacking measured bits into an array of shape
(trials, classical_addresses). The mapping of qubit to classical address is backed out from MEASURE
instructions in the program, so only do measurements where there is a 1-to-1 mapping between qubits and
classical addresses.

Returns The QPU object itself.

class pyquil.api.BenchmarkConnection(endpoint=None)
Bases: pyquil.api._qac.AbstractBenchmarker

Represents a connection to a server that generates benchmarking data.

apply_clifford_to_pauli(clifford, pauli_in)
Given a circuit that consists only of elements of the Clifford group, return its action on a PauliTerm.

In particular, for Clifford C, and Pauli P, this returns the PauliTerm representing PCP^{dagger}.

Parameters

• clifford (Program) – A Program that consists only of Clifford operations.

• pauli_in (PauliTerm) – A PauliTerm to be acted on by clifford via conjugation.

Returns A PauliTerm corresponding to pauli_in * clifford * pauli_in^{dagger}

generate_rb_sequence(depth, gateset, seed=None)
Construct a randomized benchmarking experiment on the given qubits, decomposing into gateset.

The JSON payload that is parsed is a list of lists of indices, or Nones. In the former case, they are the index
of the gate in the gateset.

Parameters

• depth (int) – The number of Clifford gates to include in the randomized benchmarking
experiment. This is different than the number of gates in the resulting experiment.

• gateset (list) – A list of pyquil gates to decompose the Clifford elements into. These
must generate the clifford group on the qubits of interest. e.g. for one qubit [RZ(np.pi/2),
RX(np.pi/2)].

• seed (int) – A positive integer that seeds the random generation of the gate sequence.

Returns A list of pyquil programs. Each pyquil program is a circuit that represents an element
of the Clifford group. When these programs are composed, the resulting Program will be
the randomized benchmarking experiment of the desired depth. e.g. if the return programs
are called cliffords then sum(cliffords, Program()) will give the randomized benchmarking
experiment, which will compose to the identity program.
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class pyquil.api.LocalBenchmarkConnection(endpoint=None)
Bases: pyquil.api._qac.AbstractBenchmarker

Represents a connection to a locally-running server that generates randomized benchmarking data.

apply_clifford_to_pauli(clifford, pauli_in)
Given a circuit that consists only of elements of the Clifford group, return its action on a PauliTerm.

In particular, for Clifford C, and Pauli P, this returns the PauliTerm representing PCP^{dagger}.

Parameters

• clifford (Program) – A Program that consists only of Clifford operations.

• pauli_in (PauliTerm) – A PauliTerm to be acted on by clifford via conjugation.

Returns A PauliTerm corresponding to pauli_in * clifford * pauli_in^{dagger}

generate_rb_sequence(depth, gateset, seed=None)
Construct a randomized benchmarking experiment on the given qubits, decomposing into gateset.

The JSON payload that is parsed is a list of lists of indices, or Nones. In the former case, they are the index
of the gate in the gateset.

Parameters

• depth (int) – The number of Clifford gates to include in the randomized benchmarking
experiment. This is different than the number of gates in the resulting experiment.

• gateset (list) – A list of pyquil gates to decompose the Clifford elements into. These
must generate the clifford group on the qubits of interest. e.g. for one qubit [RZ(np.pi/2),
RX(np.pi/2)].

• seed – A positive integer used to seed the PRNG.

Returns A list of pyquil programs. Each pyquil program is a circuit that represents an element
of the Clifford group. When these programs are composed, the resulting Program will be
the randomized benchmarking experiment of the desired depth. e.g. if the return programs
are called cliffords then sum(cliffords, Program()) will give the randomized benchmarking
experiment, which will compose to the identity program.

pyquil.api.get_benchmarker(endpoint: str = None)
Retrieve an instance of the appropriate AbstractBenchmarker subclass for a given endpoint.

Parameters endpoint – Benchmarking sequence server address. Defaults to the setting in the
user’s pyQuil config.

Returns Instance of an AbstractBenchmarker subclass, connected to the given endpoint.

1.10.2 pyquil.device

class pyquil.device.AbstractDevice
Bases: abc.ABC

get_isa(oneq_type=’Xhalves’, twoq_type=’CZ’)→ pyquil.device.ISA
Construct an ISA suitable for targeting by compilation.

This will raise an exception if the requested ISA is not supported by the device.

Parameters

• oneq_type – The family of one-qubit gates to target

• twoq_type – The family of two-qubit gates to target
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get_specs()→ pyquil.device.Specs
Construct a Specs object required by compilation

qubit_topology()→ networkx.classes.graph.Graph
The connectivity of qubits in this device given as a NetworkX graph.

qubits()
A sorted list of qubits in the device topology.

class pyquil.device.Device(name, raw)
Bases: pyquil.device.AbstractDevice

A device (quantum chip) that can accept programs.

Only devices that are online will actively be accepting new programs. In addition to the self._raw attribute,
two other attributes are optionally constructed from the entries in self._raw – isa and noise_model
– which should conform to the dictionary format required by the .from_dict() methods for ISA and
NoiseModel, respectively.

Variables

• _raw (dict) – Raw JSON response from the server with additional information about the
device.

• isa (ISA) – The instruction set architecture (ISA) for the device.

• noise_model (NoiseModel) – The noise model for the device.

get_isa(oneq_type=’Xhalves’, twoq_type=’CZ’)→ pyquil.device.ISA
Construct an ISA suitable for targeting by compilation.

This will raise an exception if the requested ISA is not supported by the device.

Parameters

• oneq_type – The family of one-qubit gates to target

• twoq_type – The family of two-qubit gates to target

get_specs()
Construct a Specs object required by compilation

isa

qubit_topology()→ networkx.classes.graph.Graph
The connectivity of qubits in this device given as a NetworkX graph.

qubits()
A sorted list of qubits in the device topology.

class pyquil.device.Edge(targets, type, dead)
Bases: tuple

dead
Alias for field number 2

targets
Alias for field number 0

type
Alias for field number 1

pyquil.device.EdgeSpecs
alias of pyquil.device._QubitQubitSpecs
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class pyquil.device.ISA
Bases: pyquil.device._ISA

Basic Instruction Set Architecture specification.

Variables

• qubits (Sequence[Qubit]) – The qubits associated with the ISA.

• edges (Sequence[Edge]) – The multi-qubit gates.

static from_dict(d)
Re-create the ISA from a dictionary representation.

Parameters d (Dict[str,Any]) – The dictionary representation.

Returns The restored ISA.

Return type ISA

to_dict()
Create a JSON-serializable representation of the ISA.

The dictionary representation is of the form:

{
"1Q": {

"0": {
"type": "Xhalves"

},
"1": {

"type": "Xhalves",
"dead": True

},
...

},
"2Q": {

"1-4": {
"type": "CZ"

},
"1-5": {

"type": "CZ"
},
...

},
...

}

Returns A dictionary representation of self.

Return type Dict[str, Any]

class pyquil.device.NxDevice(topology: networkx.classes.graph.Graph)
Bases: pyquil.device.AbstractDevice

A shim over the AbstractDevice API backed by a NetworkX graph.

A Device holds information about the physical device. Specifically, you might want to know about connec-
tivity, available gates, performance specs, and more. This class implements the AbstractDevice API for devices
not available via get_devices(). Instead, the user is responsible for constructing a NetworkX graph which
represents a chip topology.
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edges()→ List[Tuple[int, int]]

get_isa(oneq_type=’Xhalves’, twoq_type=’CZ’)
Construct an ISA suitable for targeting by compilation.

This will raise an exception if the requested ISA is not supported by the device.

Parameters

• oneq_type – The family of one-qubit gates to target

• twoq_type – The family of two-qubit gates to target

get_specs()
Construct a Specs object required by compilation

qubit_topology()
The connectivity of qubits in this device given as a NetworkX graph.

qubits()→ List[int]
A sorted list of qubits in the device topology.

class pyquil.device.Qubit(id, type, dead)
Bases: tuple

dead
Alias for field number 2

id
Alias for field number 0

type
Alias for field number 1

pyquil.device.QubitSpecs
alias of pyquil.device._QubitSpecs

class pyquil.device.Specs
Bases: pyquil.device._Specs

Basic specifications for the device, such as gate fidelities and coherence times.

Variables

• qubits_specs (List[QubitSpecs]) – The specs associated with individual qubits.

• edges_specs (List[EdgesSpecs]) – The specs associated with edges, or qubit-qubit
pairs.

T1s()
Get a dictionary of T1s (in seconds) from the specs, keyed by qubit index.

Returns A dictionary of T1s, in seconds.

Return type Dict[int, float]

T2s()
Get a dictionary of T2s (in seconds) from the specs, keyed by qubit index.

Returns A dictionary of T2s, in seconds.

Return type Dict[int, float]

f1QRBs()
Get a dictionary of single-qubit randomized benchmarking fidelities (normalized to unity) from the specs,
keyed by qubit index.
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Returns A dictionary of 1QRBs, normalized to unity.

Return type Dict[int, float]

fActiveResets()
Get a dictionary of single-qubit active reset fidelities (normalized to unity) from the specs, keyed by qubit
index.

Returns A dictionary of reset fidelities, normalized to unity.

fBellStates()
Get a dictionary of two-qubit Bell state fidelities (normalized to unity) from the specs, keyed by targets
(qubit-qubit pairs).

Returns A dictionary of Bell state fidelities, normalized to unity.

Return type Dict[tuple(int, int), float]

fCPHASEs()
Get a dictionary of CPHASE fidelities (normalized to unity) from the specs, keyed by targets (qubit-qubit
pairs).

Returns A dictionary of CPHASE fidelities, normalized to unity.

Return type Dict[tuple(int, int), float]

fCZs()
Get a dictionary of CZ fidelities (normalized to unity) from the specs, keyed by targets (qubit-qubit pairs).

Returns A dictionary of CZ fidelities, normalized to unity.

Return type Dict[tuple(int, int), float]

fROs()
Get a dictionary of single-qubit readout fidelities (normalized to unity) from the specs, keyed by qubit
index.

Returns A dictionary of RO fidelities, normalized to unity.

Return type Dict[int, float]

static from_dict(d)
Re-create the Specs from a dictionary representation.

Parameters Any] d (Dict[str,) – The dictionary representation.

Returns The restored Specs.

Return type Specs

to_dict()
Create a JSON-serializable representation of the device Specs.

The dictionary representation is of the form:

{
'1Q': {

"0": {
"f1QRB": 0.99,
"T1": 20e-6,
...

},
"1": {

"f1QRB": 0.989,
"T1": 19e-6,

(continues on next page)
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(continued from previous page)

...
},
...

},
'2Q': {

"1-4": {
"fBellState": 0.93,
"fCZ": 0.92,
"fCPHASE": 0.91

},
"1-5": {

"fBellState": 0.9,
"fCZ": 0.89,
"fCPHASE": 0.88

},
...

},
...

}

Returns A dctionary representation of self.

Return type Dict[str, Any]

pyquil.device.THETA = Parameter('theta')
Used as the symbolic parameter in RZ, CPHASE gates.

pyquil.device.gates_in_isa(isa)
Generate the full gateset associated with an ISA.

Parameters isa (ISA) – The instruction set architecture for a QPU.

Returns A sequence of Gate objects encapsulating all gates compatible with the ISA.

Return type Sequence[Gate]

pyquil.device.isa_from_graph(graph: networkx.classes.graph.Graph, oneq_type=’Xhalves’,
twoq_type=’CZ’)→ pyquil.device.ISA

Generate an ISA object from a NetworkX graph.

Parameters

• graph – The graph

• oneq_type – The type of 1-qubit gate. Currently ‘Xhalves’

• twoq_type – The type of 2-qubit gate. One of ‘CZ’ or ‘CPHASE’.

pyquil.device.isa_to_graph(isa: pyquil.device.ISA)→ networkx.classes.graph.Graph
Construct a NetworkX qubit topology from an ISA object.

This discards information about supported gates.

Parameters isa – The ISA.

pyquil.device.specs_from_graph(graph: networkx.classes.graph.Graph)
Generate a Specs object from a NetworkX graph with placeholder values for the actual specs.

Parameters graph – The graph
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1.10.3 pyquil.gates

pyquil.gates.I(qubit)
Produces the I instruction.

I = [1, 0] [0, 1]

This gate is a single qubit identity gate. Note that this gate is different that the NOP instruction as noise channels
are typically still applied during the duration of identity gates. Identities will also block parallelization like any
other gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.X(qubit)
Produces the X instruction.

X = [[0, 1], [1, 0]]

This gate is a single qubit X-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.Y(qubit)
Produces the Y instruction.

Y = [[0, 0 - 1j], [0 + 1j, 0]]

This gate is a single qubit Y-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.Z(qubit)
Produces the Z instruction.

Z = [[1, 0], [0, -1]]

This gate is a single qubit Z-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.H(qubit)

H = (1 / sqrt(2)) * [[1, 1], [1, -1]]

Produces the H instruction. This gate is a single qubit Hadamard gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.S(qubit)
Produces the S instruction.

S = [[1, 0], [0, 1j]]

This gate is a single qubit S-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.
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pyquil.gates.T(qubit)
Produces the T instruction.

T = [[1, 0], [0, exp(1j * pi / 4)]]

This gate is a single qubit T-gate. It is the same as RZ(pi/4).

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.PHASE(angle, qubit)
Produces the PHASE instruction.

PHASE(phi) = [[1, 0], [0, exp(1j * phi)]]

This is the same as the RZ gate.

Parameters

• angle – The angle to rotate around the z-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.RX(angle, qubit)
Produces the RX instruction.

RX(phi) = [[cos(phi / 2), -1j * sin(phi / 2)], [-1j * sin(phi / 2), cos(phi / 2)]]

This gate is a single qubit X-rotation.

Parameters

• angle – The angle to rotate around the x-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.RY(angle, qubit)
Produces the RY instruction.

RY(phi) = [[cos(phi / 2), -sin(phi / 2)], [sin(phi / 2), cos(phi / 2)]]

This gate is a single qubit Y-rotation.

Parameters

• angle – The angle to rotate around the y-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

pyquil.gates.RZ(angle, qubit)
Produces the RZ instruction.

RZ(phi) = [[cos(phi / 2) - 1j * sin(phi / 2), 0] [0, cos(phi / 2) + 1j * sin(phi / 2)]]

This gate is a single qubit Z-rotation.

Parameters

• angle – The angle to rotate around the z-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.
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pyquil.gates.CZ(control, target)
Produces a CZ instruction.

CZ = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]

This gate applies to two qubit arguments to produce the controlled-Z gate instruction.

Parameters

• control – The control qubit.

• target – The target qubit. The target qubit has an Z-gate applied to it if the control qubit
is in the excited state.

Returns A Gate object.

pyquil.gates.CNOT(control, target)
Produces a CNOT instruction.

CNOT = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]

This gate applies to two qubit arguments to produce the controlled-not gate instruction.

Parameters

• control – The control qubit.

• target – The target qubit. The target qubit has an X-gate applied to it if the control qubit
is in the excited state.

Returns A Gate object.

pyquil.gates.CCNOT(control1, control2, target)
Produces a CCNOT instruction.

CCNOT = [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0,
1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]

This gate applies to three qubit arguments to produce the controlled-controlled-not gate instruction.

Parameters

• control1 – The first control qubit.

• control2 – The second control qubit.

• target – The target qubit. The target qubit has an X-gate applied to it if both control
qubits are in the excited state.

Returns A Gate object.

pyquil.gates.CPHASE00(angle, control, target)
Produces a CPHASE00 instruction.

CPHASE00(phi) = diag([exp(1j * phi), 1, 1, 1])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 00.

Parameters

• angle – The input phase angle to apply when both qubits are in the ground state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.
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pyquil.gates.CPHASE01(angle, control, target)
Produces a CPHASE01 instruction.

CPHASE01(phi) = diag([1.0, exp(1j * phi), 1.0, 1.0])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 01.

Parameters

• angle – The input phase angle to apply when q1 is in the excited state and q2 is in the
ground state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

pyquil.gates.CPHASE10(angle, control, target)
Produces a CPHASE10 instruction.

CPHASE10(phi) = diag([1, 1, exp(1j * phi), 1])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 10.

Parameters

• angle – The input phase angle to apply when q2 is in the excited state and q1 is in the
ground state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

pyquil.gates.CPHASE(angle, control, target)
Produces a CPHASE instruction, which is a synonym for CPHASE11.

CPHASE(phi) = diag([1, 1, 1, exp(1j * phi)])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 11.

Parameters

• angle – The input phase angle to apply when both qubits are in the excited state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

pyquil.gates.SWAP(q1, q2)
Produces a SWAP instruction.

SWAP = [[1, 0, 0, 0],

[0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]

This gate swaps the state of two qubits.

Parameters

• q1 – Qubit 1.
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• q2 – Qubit 2.

Returns A Gate object.

pyquil.gates.CSWAP(control, target_1, target_2)

CSWAP = [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0,
1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]

Produces a CSWAP instruction. This gate swaps the state of two qubits.

Parameters

• control – The control qubit.

• target-1 – The first target qubit.

• target-2 – The second target qubit. The two target states are swapped if the control is in
the excited state.

pyquil.gates.ISWAP(q1, q2)
Produces an ISWAP instruction.

ISWAP = [[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]

This gate swaps the state of two qubits, applying a -i phase to q1 when it is in the excited state and a -i phase to
q2 when it is in the ground state.

Parameters

• q1 – Qubit 1.

• q2 – Qubit 2.

Returns A Gate object.

pyquil.gates.PSWAP(angle, q1, q2)
Produces a PSWAP instruction.

PSWAP(phi) = [[1, 0, 0, 0], [0, 0, exp(1j * phi), 0], [0, exp(1j * phi), 0, 0], [0, 0, 0, 1]]

This is a parameterized swap gate.

Parameters

• angle – The angle of the phase to apply to the swapped states. This phase is applied to q1
when it is in the excited state and to q2 when it is in the ground state.

• q1 – Qubit 1.

• q2 – Qubit 2.

Returns A Gate object.

pyquil.gates.WAIT = <pyquil.quilbase.Wait object>
This instruction tells the quantum computation to halt. Typically these is used while classical memory is being
manipulated by a CPU in a hybrid classical/quantum algorithm.

Returns A Wait object.

pyquil.gates.RESET(qubit_index=None)
Reset all qubits or just a specific qubit at qubit_index.

Parameters qubit_index (Optional[int]) – The address of the qubit to reset. If None, reset
all qubits.
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Returns A Reset or ResetQubit Quil AST expression corresponding to a global or targeted reset,
respectively.

Return type Union[Reset, ResetQubit]

pyquil.gates.NOP = <pyquil.quilbase.Nop object>
This instruction applies no operation at that timestep. Typically these are ignored in error-models.

Returns A Nop object.

pyquil.gates.HALT = <pyquil.quilbase.Halt object>
This instruction ends the program.

Returns A Halt object.

pyquil.gates.MEASURE(qubit, classical_reg=None)
Produce a MEASURE instruction.

Parameters

• qubit – The qubit to measure.

• classical_reg – The classical register to measure into, or None.

Returns A Measurement instance.

pyquil.gates.TRUE(classical_reg)
Produce a TRUE instruction.

Parameters classical_reg – A classical register to modify.

Returns An instruction object representing the equivalent MOVE.

pyquil.gates.FALSE(classical_reg)
Produce a FALSE instruction.

Parameters classical_reg – A classical register to modify.

Returns An instruction object representing the equivalent MOVE.

pyquil.gates.NOT(classical_reg)
Produce a NOT instruction.

Parameters classical_reg – A classical register to modify.

Returns A ClassicalNot instance.

pyquil.gates.AND(classical_reg1, classical_reg2)
Produce an AND instruction.

NOTE: The order of operands was reversed in pyQuil <=1.9 .

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalAnd instance.

pyquil.gates.OR(classical_reg1, classical_reg2)
Produce an OR instruction.

NOTE: Deprecated. Use IOR instead.

Parameters

• classical_reg1 – The first classical register.
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• classical_reg2 – The second classical register, which gets modified.

Returns A ClassicalOr instance.

pyquil.gates.MOVE(classical_reg1, classical_reg2)
Produce a MOVE instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalMove instance.

pyquil.gates.EXCHANGE(classical_reg1, classical_reg2)
Produce an EXCHANGE instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register, which gets modified.

Returns A ClassicalExchange instance.

pyquil.gates.IOR(classical_reg1, classical_reg2)
Produce an inclusive OR instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalOr instance.

pyquil.gates.XOR(classical_reg1, classical_reg2)
Produce an exclusive OR instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalOr instance.

pyquil.gates.NEG(classical_reg)
Produce a NEG instruction.

Parameters classical_reg – A classical memory address to modify.

Returns A ClassicalNeg instance.

pyquil.gates.ADD(classical_reg, right)
Produce an ADD instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalAdd instance.

pyquil.gates.SUB(classical_reg, right)
Produce a SUB instruction.
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Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalSub instance.

pyquil.gates.MUL(classical_reg, right)
Produce a MUL instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalMul instance.

pyquil.gates.DIV(classical_reg, right)
Produce an DIV instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalDiv instance.

pyquil.gates.EQ(classical_reg1, classical_reg2, classical_reg3)
Produce an EQ instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalEqual instance.

pyquil.gates.GT(classical_reg1, classical_reg2, classical_reg3)
Produce an GT instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalGreaterThan instance.

pyquil.gates.GE(classical_reg1, classical_reg2, classical_reg3)
Produce an GE instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.
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Returns A ClassicalGreaterEqual instance.

pyquil.gates.LE(classical_reg1, classical_reg2, classical_reg3)
Produce an LE instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalLessEqual instance.

pyquil.gates.LT(classical_reg1, classical_reg2, classical_reg3)
Produce an LT instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalLessThan instance.

pyquil.gates.LOAD(target_reg, region_name, offset_reg)
Produce a LOAD instruction.

Parameters

• target_reg – LOAD storage target.

• region_name – Named region of memory to load from.

• offset_reg – Offset into region of memory to load from. Must be a MemoryReference.

Returns A ClassicalLoad instance.

pyquil.gates.STORE(region_name, offset_reg, source)
Produce a STORE instruction.

Parameters

• region_name – Named region of memory to store to.

• offset_reg – Offset into memory region. Must be a MemoryReference.

• source – Source data. Can be either a MemoryReference or a constant.

Returns A ClassicalStore instance.

pyquil.gates.CONVERT(classical_reg1, classical_reg2)
Produce a CONVERT instruction.

Parameters

• classical_reg1 – MemoryReference to store to.

• classical_reg2 – MemoryReference to read from.

Returns A ClassicalCONVERT instance.

class pyquil.gates.Gate(name, params, qubits)
Bases: pyquil.quilbase.AbstractInstruction

This is the pyQuil object for a quantum gate instruction.
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get_qubits(indices=True)

out()

1.10.4 pyquil.noise

Module for creating and verifying noisy gate and readout definitions.

pyquil.noise.INFINITY = inf
Used for infinite coherence times.

class pyquil.noise.KrausModel
Bases: pyquil.noise._KrausModel

Encapsulate a single gate’s noise model.

Variables

• gate (str) – The name of the gate.

• params (Sequence[float]) – Optional parameters for the gate.

• targets (Sequence[int]) – The target qubit ids.

• kraus_ops (Sequence[np.array]) – The Kraus operators (must be square complex
numpy arrays).

• fidelity (float) – The average gate fidelity associated with the Kraus map relative to
the ideal operation.

static from_dict(d)
Recreate a KrausModel from the dictionary representation.

Parameters d (dict) – The dictionary representing the KrausModel. See to_dict for an exam-
ple.

Returns The deserialized KrausModel.

Return type KrausModel

to_dict()
Create a dictionary representation of a KrausModel.

For example:

{
"gate": "RX",
"params": np.pi,
"targets": [0],
"kraus_ops": [ # In this example single Kraus op = ideal

→˓RX(pi) gate
[[[0, 0], # element-wise real part of matrix
[0, 0]],
[[0, -1], # element-wise imaginary part of matrix
[-1, 0]]]

],
"fidelity": 1.0

}

Returns A JSON compatible dictionary representation.

Return type Dict[str,Any]
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static unpack_kraus_matrix(m)
Helper to optionally unpack a JSON compatible representation of a complex Kraus matrix.

Parameters m (Union[list,np.array]) – The representation of a Kraus operator. Either
a complex square matrix (as numpy array or nested lists) or a JSON-able pair of real matrices
(as nested lists) representing the element-wise real and imaginary part of m.

Returns A complex square numpy array representing the Kraus operator.

Return type np.array

class pyquil.noise.NoiseModel
Bases: pyquil.noise._NoiseModel

Encapsulate the QPU noise model containing information about the noisy gates.

Variables

• gates (Sequence[KrausModel]) – The tomographic estimates of all gates.

• assignment_probs (Dict[int,np.array]) – The single qubit readout assignment
probability matrices keyed by qubit id.

static from_dict(d)
Re-create the noise model from a dictionary representation.

Parameters d (Dict[str,Any]) – The dictionary representation.

Returns The restored noise model.

Return type NoiseModel

gates_by_name(name)
Return all defined noisy gates of a particular gate name.

Parameters name (str) – The gate name.

Returns A list of noise models representing that gate.

Return type Sequence[KrausModel]

to_dict()
Create a JSON serializable representation of the noise model.

For example:

{
"gates": [

# list of embedded dictionary representations of KrausModels here [...
→˓]

]
"assignment_probs": {

"0": [[.8, .1],
[.2, .9]],

"1": [[.9, .4],
[.1, .6]],

}
}

Returns A dictionary representation of self.

Return type Dict[str,Any]
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exception pyquil.noise.NoisyGateUndefined
Bases: Exception

Raise when user attempts to use noisy gate outside of currently supported set.

pyquil.noise.add_decoherence_noise(prog, T1=3e-05, T2=3e-05, gate_time_1q=5e-08,
gate_time_2q=1.5e-07, ro_fidelity=0.95)

Add generic damping and dephasing noise to a program.

This high-level function is provided as a convenience to investigate the effects of a generic noise model on a
program. For more fine-grained control, please investigate the other methods available in the pyquil.noise
module.

In an attempt to closely model the QPU, noisy versions of RX(+-pi/2) and CZ are provided; I and parametric
RZ are noiseless, and other gates are not allowed. To use this function, you need to compile your program to
this native gate set.

The default noise parameters

• T1 = 30 us

• T2 = 30 us

• 1q gate time = 50 ns

• 2q gate time = 150 ns

are currently typical for near-term devices.

This function will define new gates and add Kraus noise to these gates. It will translate the input program to use
the noisy version of the gates.

Parameters

• prog – A pyquil program consisting of I, RZ, CZ, and RX(+-pi/2) instructions

• T1 (Union[Dict[int,float],float]) – The T1 amplitude damping time either
globally or in a dictionary indexed by qubit id. By default, this is 30 us.

• T2 (Union[Dict[int,float],float]) – The T2 dephasing time either globally or
in a dictionary indexed by qubit id. By default, this is also 30 us.

• gate_time_1q (float) – The duration of the one-qubit gates, namely RX(+pi/2) and
RX(-pi/2). By default, this is 50 ns.

• gate_time_2q (float) – The duration of the two-qubit gates, namely CZ. By default,
this is 150 ns.

• ro_fidelity (Union[Dict[int,float],float]) – The readout assignment fi-
delity 𝐹 = (𝑝(0|0) + 𝑝(1|1))/2 either globally or in a dictionary indexed by qubit id.

Returns A new program with noisy operators.

pyquil.noise.append_kraus_to_gate(kraus_ops, gate_matrix)
Follow a gate gate_matrix by a Kraus map described by kraus_ops.

Parameters

• kraus_ops (list) – The Kraus operators.

• gate_matrix (numpy.ndarray) – The unitary gate.

Returns A list of transformed Kraus operators.

pyquil.noise.apply_noise_model(prog, noise_model)
Apply a noise model to a program and generated a ‘noisy-fied’ version of the program.
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Parameters

• prog (Program) – A Quil Program object.

• noise_model (NoiseModel) – A NoiseModel, either generated from an ISA or from a
simple decoherence model.

Returns A new program translated to a noisy gateset and with noisy readout as described by the
noisemodel.

Return type Program

pyquil.noise.bitstring_probs_to_z_moments(p)
Convert between bitstring probabilities and joint Z moment expectations.

Parameters p (np.array) – An array that enumerates bitstring probabilities. When flattened out
p = [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

Returns

z_moments, an np.array with one length-2 axis per qubit which contains the expectations of
all monomials in {I, Z_0, Z_1, ..., Z_{n-1}}. The expectations of each monomial
can be accessed via:

<Z_0^j_0 Z_1^j_1 ... Z_m^j_m> = z_moments[j_0,j_1,...,j_m]

Return type np.array

pyquil.noise.combine_kraus_maps(k1, k2)
Generate the Kraus map corresponding to the composition of two maps on the same qubits with k1 being applied
to the state after k2.

Parameters

• k1 (list) – The list of Kraus operators that are applied second.

• k2 (list) – The list of Kraus operators that are applied first.

Returns A combinatorially generated list of composed Kraus operators.

pyquil.noise.correct_bitstring_probs(p, assignment_probabilities)
Given a 2d array of corrupted bitstring probabilities (outer axis iterates over shots, inner axis over bits) and a list
of assignment probability matrices (one for each bit in the readout) compute the corrected probabilities.

Parameters

• p (np.array) – An array that enumerates bitstring probabilities. When flattened out p
= [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

• assignment_probabilities (List[np.array]) – A list of assignment probabil-
ity matrices per qubit. Each assignment probability matrix is expected to be of the form:

[[p00 p01]
[p10 p11]]

Returns p_corrected an array with as many dimensions as there are qubits that contains the
noisy-readout-corrected estimated probabilities for each measured bitstring, i.e., p[i,j,...,
k] gives the estimated probability of bitstring ij...k.

Return type np.array
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pyquil.noise.corrupt_bitstring_probs(p, assignment_probabilities)
Given a 2d array of true bitstring probabilities (outer axis iterates over shots, inner axis over bits) and a list of
assignment probability matrices (one for each bit in the readout, ordered like the inner axis of results) compute
the corrupted probabilities.

Parameters

• p (np.array) – An array that enumerates bitstring probabilities. When flattened out p
= [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

• assignment_probabilities (List[np.array]) – A list of assignment probabil-
ity matrices per qubit. Each assignment probability matrix is expected to be of the form:

[[p00 p01]
[p10 p11]]

Returns p_corrected an array with as many dimensions as there are qubits that contains the
noisy-readout-corrected estimated probabilities for each measured bitstring, i.e., p[i,j,...,
k] gives the estimated probability of bitstring ij...k.

Return type np.array

pyquil.noise.damping_after_dephasing(T1, T2, gate_time)
Generate the Kraus map corresponding to the composition of a dephasing channel followed by an amplitude
damping channel.

Parameters

• T1 (float) – The amplitude damping time

• T2 (float) – The dephasing time

• gate_time (float) – The gate duration.

Returns A list of Kraus operators.

pyquil.noise.damping_kraus_map(p=0.1)
Generate the Kraus operators corresponding to an amplitude damping noise channel.

Parameters p (float) – The one-step damping probability.

Returns A list [k1, k2] of the Kraus operators that parametrize the map.

Return type list

pyquil.noise.decoherence_noise_with_asymmetric_ro(gates: Se-
quence[pyquil.quilbase.Gate],
p00=0.975, p11=0.911)

Similar to :py:func‘_decoherence_noise_model‘, but with asymmetric readout.

For simplicity, we use the default values for T1, T2, gate times, et al. and only allow the specification of readout
fidelities.

pyquil.noise.dephasing_kraus_map(p=0.1)
Generate the Kraus operators corresponding to a dephasing channel.

Params float p The one-step dephasing probability.

Returns A list [k1, k2] of the Kraus operators that parametrize the map.

Return type list
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pyquil.noise.estimate_assignment_probs(q, trials, cxn, p0=None)
Estimate the readout assignment probabilities for a given qubit q. The returned matrix is of the form:

[[p00 p01]
[p10 p11]]

Parameters

• q (int) – The index of the qubit.

• trials (int) – The number of samples for each state preparation.

• cxn (Union[QVMConnection,QPUConnection]) – The quantum abstract machine
to sample from.

• p0 (Program) – A header program to prepend to the state preparation programs.

Returns The assignment probability matrix

Return type np.array

pyquil.noise.estimate_bitstring_probs(results)
Given an array of single shot results estimate the probability distribution over all bitstrings.

Parameters results (np.array) – A 2d array where the outer axis iterates over shots and the
inner axis over bits.

Returns An array with as many axes as there are qubit and normalized such that it sums to one.
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

Return type np.array

pyquil.noise.get_noisy_gate(gate_name, params)
Look up the numerical gate representation and a proposed ‘noisy’ name.

Parameters

• gate_name (str) – The Quil gate name

• params (Tuple[float]) – The gate parameters.

Returns A tuple (matrix, noisy_name) with the representation of the ideal gate matrix and a pro-
posed name for the noisy version.

Return type Tuple[np.array, str]

pyquil.noise.pauli_kraus_map(probabilities)
Generate the Kraus operators corresponding to a pauli channel.

Params list|floats probabilities The 4^num_qubits list of probabilities specifying the desired pauli
channel.

There should be either 4 or 16 probabilities specified in the order I, X, Y, Z for 1 qubit or II, IX, IY, IZ, XI, XX,
XY, etc for 2 qubits.

For example:

The d-dimensional depolarizing channel \Delta parameterized as
\Delta(\rho) = p \rho + [(1-p)/d] I
is specified by the list of probabilities
[p + (1-p)/d, (1-p)/d, (1-p)/d), ... , (1-p)/d)]

Returns A list of the 4^num_qubits Kraus operators that parametrize the map.
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Return type list

pyquil.noise.tensor_kraus_maps(k1, k2)
Generate the Kraus map corresponding to the composition of two maps on different qubits.

Parameters

• k1 (list) – The Kraus operators for the first qubit.

• k2 (list) – The Kraus operators for the second qubit.

Returns A list of tensored Kraus operators.

1.10.5 pyquil.parser

Module for parsing Quil programs from text into PyQuil objects

pyquil.parser.parse(quil)
Parse a raw Quil program and return a corresponding list of PyQuil objects.

Parameters quil (str) – a single or multiline Quil program

Returns list of instructions

pyquil.parser.parse_program(quil)
Parse a raw Quil program and return a PyQuil program.

Parameters quil (str) – a single or multiline Quil program

Returns PyQuil Program object

1.10.6 pyquil.paulis

Module for working with Pauli algebras.

pyquil.paulis.HASH_PRECISION = 1000000.0
The precision used when hashing terms to check equality. The simplify() method uses np.isclose() for coefficient
comparisons to 0 which has its own default precision. We can’t use np.isclose() for hashing terms though.

pyquil.paulis.ID()
The identity Pauli Term.

class pyquil.paulis.PauliSum(terms)
Bases: object

A sum of one or more PauliTerms.

get_programs()
Get a Pyquil Program corresponding to each term in the PauliSum and a coefficient for each program

Returns (programs, coefficients)

get_qubits()
The support of all the operators in the PauliSum object.

Returns A list of all the qubits in the sum of terms.

Return type list

simplify()
Simplifies the sum of Pauli operators according to Pauli algebra rules.
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class pyquil.paulis.PauliTerm(op, index, coefficient=1.0)
Bases: object

A term is a product of Pauli operators operating on different qubits.

copy()
Properly creates a new PauliTerm, with a completely new dictionary of operators

classmethod from_list(terms_list, coefficient=1.0)
Allocates a Pauli Term from a list of operators and indices. This is more efficient than multiplying together
individual terms.

Parameters terms_list (list) – A list of tuples, e.g. [(“X”, 0), (“Y”, 1)]

Returns PauliTerm

get_qubits()
Gets all the qubits that this PauliTerm operates on.

id(sort_ops=True)
Returns an identifier string for the PauliTerm (ignoring the coefficient).

Don’t use this to compare terms. This function will not work with qubits that aren’t sortable.

Parameters sort_ops – Whether to sort operations by qubit. This is True by default for back-
wards compatibility but will change in pyQuil 2.0. Callers should never rely on comparing
id’s for testing equality. See operations_as_set instead.

Returns A string representation of this term’s operations.

Return type string

operations_as_set()
Return a frozenset of operations in this term.

Use this in place of id() if the order of operations in the term does not matter.

Returns frozenset of strings representing Pauli operations

pauli_string(qubits=None)
Return a string representation of this PauliTerm mod its phase, as a concatenation of the string repre-
sentation of the >>> p = PauliTerm(“X”, 0) * PauliTerm(“Y”, 1, 1.j) >>> p.pauli_string() “XY” >>>
p.pauli_string([0]) “X” >>> p.pauli_string([0, 2]) “XI”

Parameters qubits (list) – The list of qubits to represent, given as ints. If None, defaults
to all qubits in this PauliTerm.

Returns The string representation of this PauliTerm, modulo its phase.

Return type String

program

exception pyquil.paulis.UnequalLengthWarning(*args, **kwargs)
Bases: Warning

pyquil.paulis.ZERO()
The zero Pauli Term.

pyquil.paulis.check_commutation(pauli_list, pauli_two)
Check if commuting a PauliTerm commutes with a list of other terms by natural calculation. Derivation similar
to arXiv:1405.5749v2 fo the check_commutation step in the Raesi, Wiebe, Sanders algorithm (arXiv:1108.4318,
2011).

Parameters
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• pauli_list (list) – A list of PauliTerm objects

• pauli_two_term (PauliTerm) – A PauliTerm object

Returns True if pauli_two object commutes with pauli_list, False otherwise

Return type bool

pyquil.paulis.commuting_sets(pauli_terms)
Gather the Pauli terms of pauli_terms variable into commuting sets

Uses algorithm defined in (Raeisi, Wiebe, Sanders, arXiv:1108.4318, 2011) to find commuting sets. Except uses
commutation check from arXiv:1405.5749v2

Parameters pauli_terms (PauliSum) – A PauliSum object

Returns List of lists where each list contains a commuting set

Return type list

pyquil.paulis.exponential_map(term)
Creates map alpha -> exp(-1j*alpha*term) represented as a Program.

Parameters term (PauliTerm) – Tests is a PauliTerm is the identity operator

Returns Program

Return type Function

pyquil.paulis.exponentiate(term)
Creates a pyQuil program that simulates the unitary evolution exp(-1j * term)

Parameters term (PauliTerm) – Tests is a PauliTerm is the identity operator

Returns A Program object

Return type Program

pyquil.paulis.exponentiate_commuting_pauli_sum(pauli_sum)
Returns a function that maps all substituent PauliTerms and sums them into a program. NOTE: Use this function
with care. Substituent PauliTerms should commute.

Parameters pauli_sum (PauliSum) – PauliSum to exponentiate.

Returns A function that parametrizes the exponential.

Return type function

pyquil.paulis.integer_types = (<class 'int'>, <class 'numpy.int64'>, <class 'numpy.int32'>, <class 'numpy.int16'>, <class 'numpy.int8'>)
Explicitly include numpy integer dtypes (for python 3).

pyquil.paulis.is_identity(term)
Check if Pauli Term is a scalar multiple of identity

Parameters term (PauliTerm) – A PauliTerm object

Returns True if the PauliTerm is a scalar multiple of identity, false otherwise

Return type bool

pyquil.paulis.is_zero(pauli_object)
Tests to see if a PauliTerm or PauliSum is zero.

Parameters pauli_object – Either a PauliTerm or PauliSum

Returns True if PauliTerm is zero, False otherwise

Return type bool
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pyquil.paulis.sI(q)
A function that returns the identity operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

pyquil.paulis.sX(q)
A function that returns the sigma_X operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

pyquil.paulis.sY(q)
A function that returns the sigma_Y operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

pyquil.paulis.sZ(q)
A function that returns the sigma_Z operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

pyquil.paulis.simplify_pauli_sum(pauli_sum)

pyquil.paulis.suzuki_trotter(trotter_order, trotter_steps)
Generate trotterization coefficients for a given number of Trotter steps.

U = exp(A + B) is approximated as exp(w1*o1)exp(w2*o2). . . This method returns a list [(w1, o1), (w2, o2),
. . . , (wm, om)] of tuples where o=0 corresponds to the A operator, o=1 corresponds to the B operator, and w
is the coefficient in the exponential. For example, a second order Suzuki-Trotter approximation to exp(A + B)
results in the following [(0.5/trotter_steps, 0), (1/trotteri_steps, 1), (0.5/trotter_steps, 0)] * trotter_steps.

Parameters

• trotter_order (int) – order of Suzuki-Trotter approximation

• trotter_steps (int) – number of steps in the approximation

Returns List of tuples corresponding to the coefficient and operator type: o=0 is A and o=1 is B.

Return type list

pyquil.paulis.term_with_coeff(term, coeff)
Change the coefficient of a PauliTerm.

Parameters

• term (PauliTerm) – A PauliTerm object

• coeff (Number) – The coefficient to set on the PauliTerm

Returns A new PauliTerm that duplicates term but sets coeff

Return type PauliTerm
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pyquil.paulis.trotterize(first_pauli_term, second_pauli_term, trotter_order=1, trotter_steps=1)
Create a Quil program that approximates exp( (A + B)t) where A and B are PauliTerm operators.

Parameters

• first_pauli_term (PauliTerm) – PauliTerm denoted A

• second_pauli_term (PauliTerm) – PauliTerm denoted B

• trotter_order (int) – Optional argument indicating the Suzuki-Trotter approximation
order–only accepts orders 1, 2, 3, 4.

• trotter_steps (int) – Optional argument indicating the number of products to de-
compose the exponential into.

Returns Quil program

Return type Program

1.10.7 pyquil.quil

Module for creating and defining Quil programs.

class pyquil.quil.Program(*instructions)
Bases: object

alloc()
Get a new qubit.

Returns A qubit.

Return type Qubit

copy()
Perform a shallow copy of this program.

QuilAtom and AbstractInstruction objects should be treated as immutable to avoid strange behavior when
performing a copy.

Returns a new Program

dagger(inv_dict=None, suffix=’-INV’)
Creates the conjugate transpose of the Quil program. The program must not contain any irreversible actions
(measurement, control flow, qubit allocation).

Returns The Quil program’s inverse

Return type Program

declare(name, memory_type=’BIT’, memory_size=1, shared_region=None, offsets=None)
DECLARE a quil variable

This adds the declaration to the current program and returns a MemoryReference to the base (offset = 0)
of the declared memory.

Note: This function returns a MemoryReference and cannot be chained like some of the other Program
methods. Consider using inst(DECLARE(...)) if you would like to chain methods, but please be
aware that you must create your own MemoryReferences later on.

Parameters

• name – Name of the declared variable
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• memory_type – Type of the declared variable

• memory_size – Number of array elements in the declared memory.

• shared_region – You can declare a variable that shares its underlying memory with
another region. This allows aliasing. For example, you can interpret an array of measured
bits as an integer.

• offsets – If you are using shared_region, this allows you to share only a part
of the parent region. The offset is given by an array type and the number of elements
of that type. For example, DECLARE target-bit BIT SHARING real-region
OFFSET 1 REAL 4 BIT will let you use target-bit to poke into the fourth bit of the
second real from the leading edge of real-region.

Returns a MemoryReference to the start of the declared memory region, ie a memory reference
to name[0].

defgate(name, matrix, parameters=None)
Define a new static gate.

Note: The matrix elements along each axis are ordered by bitstring. For two qubits the order is 00,
01, 10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the
bitstring 01 indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM
Overview.

Parameters

• name (string) – The name of the gate.

• matrix (array-like) – List of lists or Numpy 2d array.

• parameters (list) – list of parameters that are used in this gate

Returns The Program instance.

Return type Program

define_noisy_gate(name, qubit_indices, kraus_ops)
Overload a static ideal gate with a noisy one defined in terms of a Kraus map.

Note: The matrix elements along each axis are ordered by bitstring. For two qubits the order is 00,
01, 10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the
bitstring 01 indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM
Overview.

Parameters

• name (str) – The name of the gate.

• qubit_indices (tuple|list) – The qubits it acts on.

• kraus_ops (tuple|list) – The Kraus operators.

Returns The Program instance

Return type Program
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define_noisy_readout(qubit, p00, p11)
For this program define a classical bit flip readout error channel parametrized by p00 and p11. This
models the effect of thermal noise that corrupts the readout signal after it has interrogated the qubit.

Parameters

• qubit (int|QubitPlaceholder) – The qubit with noisy readout.

• p00 (float) – The probability of obtaining the measurement result 0 given that the qubit
is in state 0.

• p11 (float) – The probability of obtaining the measurement result 1 given that the qubit
is in state 1.

Returns The Program with an appended READOUT-POVM Pragma.

Return type Program

defined_gates
A list of defined gates on the program.

gate(name, params, qubits)
Add a gate to the program.

Note: The matrix elements along each axis are ordered by bitstring. For two qubits the order is 00,
01, 10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the
bitstring 01 indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM
Overview.

Parameters

• name (string) – The name of the gate.

• params (list) – Parameters to send to the gate.

• qubits (list) – Qubits that the gate operates on.

Returns The Program instance

Return type Program

get_qubits(indices=True)
Returns all of the qubit indices used in this program, including gate applications and allocated qubits. e.g.

>>> p = Program()
>>> p.inst(("H", 1))
>>> p.get_qubits()
{1}
>>> q = p.alloc()
>>> p.inst(H(q))
>>> len(p.get_qubits())
2

Parameters indices – Return qubit indices as integers intead of the wrapping Qubit object

Returns A set of all the qubit indices used in this program

Return type set
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if_then(classical_reg, if_program, else_program=None)
If the classical register at index classical reg is 1, run if_program, else run else_program.

Equivalent to the following construction:

IF [c]:
instrA...

ELSE:
instrB...

=>
JUMP-WHEN @THEN [c]
instrB...
JUMP @END
LABEL @THEN
instrA...
LABEL @END

Parameters

• classical_reg (int) – The classical register to check as the condition

• if_program (Program) – A Quil program to execute if classical_reg is 1

• else_program (Program) – A Quil program to execute if classical_reg is 0. This
argument is optional and defaults to an empty Program.

Returns The Quil Program with the branching instructions added.

Return type Program

inst(*instructions)
Mutates the Program object by appending new instructions.

This function accepts a number of different valid forms, e.g.

>>> p = Program()
>>> p.inst(H(0)) # A single instruction
>>> p.inst(H(0), H(1)) # Multiple instructions
>>> p.inst([H(0), H(1)]) # A list of instructions
>>> p.inst(H(i) for i in range(4)) # A generator of instructions
>>> p.inst(("H", 1)) # A tuple representing an instruction
>>> p.inst("H 0") # A string representing an instruction
>>> q = Program()
>>> p.inst(q) # Another program

It can also be chained:

>>> p = Program()
>>> p.inst(H(0)).inst(H(1))

Parameters instructions – A list of Instruction objects, e.g. Gates

Returns self for method chaining

instructions
Fill in any placeholders and return a list of quil AbstractInstructions.
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is_protoquil()
Protoquil programs may only contain gates, Pragmas, and final global RESETs. It may not contain classical
instructions or jumps.

Returns True if the Program is Protoquil, False otherwise

measure(qubit_index, classical_reg=None)
Measures a qubit at qubit_index and puts the result in classical_reg

Parameters

• qubit_index (int) – The address of the qubit to measure.

• classical_reg (int) – The address of the classical bit to store the result.

Returns The Quil Program with the appropriate measure instruction appended, e.g. MEASURE
0 [1]

Return type Program

measure_all(*qubit_reg_pairs)
Measures many qubits into their specified classical bits, in the order they were entered. If no qubit/register
pairs are provided, measure all qubits present in the program into classical addresses of the same index.

Parameters qubit_reg_pairs (Tuple) – Tuples of qubit indices paired with classical bits.

Returns The Quil Program with the appropriate measure instructions appended, e.g.

MEASURE 0 [1]
MEASURE 1 [2]
MEASURE 2 [3]

Return type Program

no_noise()
Prevent a noisy gate definition from being applied to the immediately following Gate instruction.

Returns Program

out()
Serializes the Quil program to a string suitable for submitting to the QVM or QPU.

pop()
Pops off the last instruction.

Returns The instruction that was popped.

Return type tuple

reset(qubit_index=None)
Reset all qubits or just a specific qubit at qubit_index.

Parameters qubit_index (Optional[int]) – The address of the qubit to reset. If None,
reset all qubits.

Returns The Quil Program with the appropriate reset instruction appended, e.g. RESET 0

Return type Program

while_do(classical_reg, q_program)
While a classical register at index classical_reg is 1, loop q_program

Equivalent to the following construction:
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WHILE [c]:
instr...

=>
LABEL @START
JUMP-UNLESS @END [c]
instr...
JUMP @START
LABEL @END

Parameters

• classical_reg (int) – The classical register to check

• q_program (Program) – The Quil program to loop.

Returns The Quil Program with the loop instructions added.

Return type Program

wrap_in_numshots_loop(shots: int)
Wraps a Quil program in a loop that re-runs the same program many times.

Note: this function is a prototype of what will exist in the future when users will be responsible for writing
this loop instead of having it happen automatically.

Parameters shots – Number of iterations to loop through.

pyquil.quil.address_qubits(program, qubit_mapping=None)
Takes a program which contains placeholders and assigns them all defined values.

Either all qubits must be defined or all undefined. If qubits are undefined, you may provide a qubit mapping to
specify how placeholders get mapped to actual qubits. If a mapping is not provided, integers 0 through N are
used.

This function will also instantiate any label placeholders.

Parameters

• program – The program.

• qubit_mapping – A dictionary-like object that maps from QubitPlaceholder to
Qubit or int (but not both).

Returns A new Program with all qubit and label placeholders assigned to real qubits and labels.

pyquil.quil.get_classical_addresses_from_program(program)→ Dict[str, List[int]]
Returns a sorted list of classical addresses found in the MEASURE instructions in the program.

Parameters program (Program) – The program from which to get the classical addresses.

Returns A mapping from memory region names to lists of offsets appearing in the program.

pyquil.quil.get_default_qubit_mapping(program)
Takes a program which contains qubit placeholders and provides a mapping to the integers 0 through N-1.

The output of this function is suitable for input to address_qubits().

Parameters program – A program containing qubit placeholders

Returns A dictionary mapping qubit placeholder to an addressed qubit from 0 through N-1.

pyquil.quil.implicitly_declare_ro(instructions: List[pyquil.quilbase.AbstractInstruction])
Implicitly declare a register named ro for backwards compatibility with Quil 1.
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There used to be one un-named hunk of classical memory. Now there are variables with declarations. Instead
of:

MEASURE 0 [0]

You must now measure into a named register, idiomatically:

MEASURE 0 ro[0]

The MEASURE instruction will emit this (with a deprecation warning) if you’re still using bare integers for
classical addresses. However, you must also declare memory in the new scheme:

DECLARE ro BIT[8]
MEASURE 0 ro[0]

This method will determine if you are in “backwards compatibility mode” and will declare a read-out ro register
for you. If you program contains any DECLARE commands or if it does not have any MEASURE x ro[x], this
will not do anything.

This behavior is included for backwards compatibility and will be removed in future releases of PyQuil. Please
DECLARE all memory including ro.

pyquil.quil.instantiate_labels(instructions)
Takes an iterable of instructions which may contain label placeholders and assigns them all defined values.

Returns list of instructions with all label placeholders assigned to real labels.

pyquil.quil.merge_programs(prog_list)
Merges a list of pyQuil programs into a single one by appending them in sequence. If multiple programs in the
list contain the same gate and/or noisy gate definition with identical name, this definition will only be applied
once. If different definitions with the same name appear multiple times in the program list, each will be applied
once in the order of last occurrence.

Parameters prog_list (list) – A list of pyquil programs

Returns a single pyQuil program

Return type Program

pyquil.quil.merge_with_pauli_noise(prog_list: Iterable, probabilities: List, qubits: List)
Insert pauli noise channels between each item in the list of programs. This noise channel is implemented as a
single noisy identity gate acting on the provided qubits. This method does not rely on merge_programs and so
avoids the inclusion of redundant Kraus Pragmas that would occur if merge_programs was called directly on
programs with distinct noisy gate definitions.

Parameters

• prog_list – an iterable such as a program or a list of programs. If a program is provided,
a single noise gate will be applied after each gate in the program. If a list of programs is
provided, the noise gate will be applied after each program.

• probabilities – The 4^num_qubits list of probabilities specifying the desired pauli
channel. There should be either 4 or 16 probabilities specified in the order I, X, Y, Z or II,
IX, IY, IZ, XI, XX, XY, etc respectively.

• qubits – a list of the qubits that the noisy gate should act on.

Returns A single program with noisy gates inserted between each element of the program list.

Return type Program
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pyquil.quil.percolate_declares(program: pyquil.quil.Program)→ pyquil.quil.Program
Move all the DECLARE statements to the top of the program. Return a fresh obejct.

Parameters program – Perhaps jumbled program.

Returns Program with DECLAREs all at the top and otherwise the same sorted contents.

pyquil.quil.validate_protoquil(program: pyquil.quil.Program)→ None
Ensure that a program is valid ProtoQuil, otherwise raise a ValueError. Protoquil allows a global RESET before
any gates, and MEASUREs on each qubit after any gates on that qubit. Pragmas are always allowed, and a final
Halt instruction is allowed.

Parameters program – The Quil program to validate.

1.10.8 pyquil.quilbase

Contains the core pyQuil objects that correspond to Quil instructions.

class pyquil.quilbase.AbstractInstruction
Bases: object

Abstract class for representing single instructions.

out()

class pyquil.quilbase.ArithmeticBinaryOp(left, right)
Bases: pyquil.quilbase.AbstractInstruction

The abstract class for binary arithmetic classical instructions.

out()

class pyquil.quilbase.ClassicalAdd(left, right)
Bases: pyquil.quilbase.ArithmeticBinaryOp

The ADD instruction.

op = 'ADD'

class pyquil.quilbase.ClassicalAnd(left, right)
Bases: pyquil.quilbase.LogicalBinaryOp

WARNING: The operand order for ClassicalAnd has changed. In pyQuil versions <= 1.9, AND had signature

AND %source %target

Now, AND has signature

AND %target %source

op = 'AND'

class pyquil.quilbase.ClassicalComparison(target, left, right)
Bases: pyquil.quilbase.AbstractInstruction

Abstract class for ternary comparison instructions.

out()

class pyquil.quilbase.ClassicalConvert(left, right)
Bases: pyquil.quilbase.AbstractInstruction

The CONVERT instruction.

op = 'CONVERT'
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out()

class pyquil.quilbase.ClassicalDiv(left, right)
Bases: pyquil.quilbase.ArithmeticBinaryOp

The DIV instruction.

op = 'DIV'

class pyquil.quilbase.ClassicalEqual(target, left, right)
Bases: pyquil.quilbase.ClassicalComparison

The EQ comparison instruction.

op = 'EQ'

class pyquil.quilbase.ClassicalExchange(left, right)
Bases: pyquil.quilbase.AbstractInstruction

The EXCHANGE instruction.

op = 'EXCHANGE'

out()

class pyquil.quilbase.ClassicalExclusiveOr(left, right)
Bases: pyquil.quilbase.LogicalBinaryOp

The XOR instruction.

op = 'XOR'

class pyquil.quilbase.ClassicalFalse(target)
Bases: pyquil.quilbase.ClassicalMove

Deprecated class.

class pyquil.quilbase.ClassicalGreaterEqual(target, left, right)
Bases: pyquil.quilbase.ClassicalComparison

The GE comparison instruction.

op = 'GE'

class pyquil.quilbase.ClassicalGreaterThan(target, left, right)
Bases: pyquil.quilbase.ClassicalComparison

The GT comparison instruction.

op = 'GT'

class pyquil.quilbase.ClassicalInclusiveOr(left, right)
Bases: pyquil.quilbase.LogicalBinaryOp

The IOR instruction.

op = 'IOR'

class pyquil.quilbase.ClassicalLessEqual(target, left, right)
Bases: pyquil.quilbase.ClassicalComparison

The LE comparison instruction.

op = 'LE'

class pyquil.quilbase.ClassicalLessThan(target, left, right)
Bases: pyquil.quilbase.ClassicalComparison
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The LT comparison instruction.

op = 'LT'

class pyquil.quilbase.ClassicalLoad(target, left, right)
Bases: pyquil.quilbase.AbstractInstruction

The LOAD instruction.

op = 'LOAD'

out()

class pyquil.quilbase.ClassicalMove(left, right)
Bases: pyquil.quilbase.AbstractInstruction

The MOVE instruction.

WARNING: In pyQuil 2.0, the order of operands is as MOVE <target> <source>. In pyQuil 1.9, the order
of operands was MOVE <source> <target>. These have reversed.

op = 'MOVE'

out()

class pyquil.quilbase.ClassicalMul(left, right)
Bases: pyquil.quilbase.ArithmeticBinaryOp

The MUL instruction.

op = 'MUL'

class pyquil.quilbase.ClassicalNeg(target)
Bases: pyquil.quilbase.UnaryClassicalInstruction

The NEG instruction.

op = 'NEG'

class pyquil.quilbase.ClassicalNot(target)
Bases: pyquil.quilbase.UnaryClassicalInstruction

The NOT instruction.

op = 'NOT'

class pyquil.quilbase.ClassicalOr(left, right)
Bases: pyquil.quilbase.ClassicalInclusiveOr

Deprecated class.

class pyquil.quilbase.ClassicalStore(target, left, right)
Bases: pyquil.quilbase.AbstractInstruction

The STORE instruction.

op = 'STORE'

out()

class pyquil.quilbase.ClassicalSub(left, right)
Bases: pyquil.quilbase.ArithmeticBinaryOp

The SUB instruction.

op = 'SUB'
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class pyquil.quilbase.ClassicalTrue(target)
Bases: pyquil.quilbase.ClassicalMove

Deprecated class.

class pyquil.quilbase.Declare(name, memory_type, memory_size=1, shared_region=None, off-
sets=None)

Bases: pyquil.quilbase.AbstractInstruction

A DECLARE directive.

This is printed in Quil as:

DECLARE <name> <memory-type> (SHARING <other-name> (OFFSET <amount> <type>)* )?

asdict()

out()

class pyquil.quilbase.DefGate(name, matrix, parameters=None)
Bases: pyquil.quilbase.AbstractInstruction

A DEFGATE directive.

Parameters

• name (string) – The name of the newly defined gate.

• matrix (array-like) – {list, nparray, np.matrix} The matrix defining this gate.

• parameters (list) – list of parameters that are used in this gate

get_constructor()

Returns A function that constructs this gate on variable qubit indices. E.g. my-
gate.get_constructor()(1) applies the gate to qubit 1.

num_args()

Returns The number of qubit arguments the gate takes.

Return type int

out()
Prints a readable Quil string representation of this gate.

Returns String representation of a gate

Return type string

class pyquil.quilbase.Gate(name, params, qubits)
Bases: pyquil.quilbase.AbstractInstruction

This is the pyQuil object for a quantum gate instruction.

get_qubits(indices=True)

out()

class pyquil.quilbase.Halt
Bases: pyquil.quilbase.SimpleInstruction

The HALT instruction.

op = 'HALT'
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class pyquil.quilbase.Jump(target)
Bases: pyquil.quilbase.AbstractInstruction

Representation of an unconditional jump instruction (JUMP).

out()

class pyquil.quilbase.JumpConditional(target, condition)
Bases: pyquil.quilbase.AbstractInstruction

Abstract representation of an conditional jump instruction.

out()

class pyquil.quilbase.JumpTarget(label)
Bases: pyquil.quilbase.AbstractInstruction

Representation of a target that can be jumped to.

out()

class pyquil.quilbase.JumpUnless(target, condition)
Bases: pyquil.quilbase.JumpConditional

The JUMP-UNLESS instruction.

op = 'JUMP-UNLESS'

class pyquil.quilbase.JumpWhen(target, condition)
Bases: pyquil.quilbase.JumpConditional

The JUMP-WHEN instruction.

op = 'JUMP-WHEN'

class pyquil.quilbase.LogicalBinaryOp(left, right)
Bases: pyquil.quilbase.AbstractInstruction

The abstract class for binary logical classical instructions.

out()

class pyquil.quilbase.Measurement(qubit, classical_reg=None)
Bases: pyquil.quilbase.AbstractInstruction

This is the pyQuil object for a Quil measurement instruction.

get_qubits(indices=True)

out()

class pyquil.quilbase.Nop
Bases: pyquil.quilbase.SimpleInstruction

The NOP instruction.

op = 'NOP'

class pyquil.quilbase.Pragma(command, args=(), freeform_string=”)
Bases: pyquil.quilbase.AbstractInstruction

A PRAGMA instruction.

This is printed in QUIL as:

PRAGMA <command> <arg1> <arg2> ... <argn> "<freeform_string>"

out()
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class pyquil.quilbase.RawInstr(instr_str)
Bases: pyquil.quilbase.AbstractInstruction

A raw instruction represented as a string.

out()

class pyquil.quilbase.Reset
Bases: pyquil.quilbase.SimpleInstruction

The RESET instruction.

op = 'RESET'

class pyquil.quilbase.ResetQubit(qubit)
Bases: pyquil.quilbase.AbstractInstruction

This is the pyQuil object for a Quil targeted reset instruction.

get_qubits(indices=True)

out()

class pyquil.quilbase.SimpleInstruction
Bases: pyquil.quilbase.AbstractInstruction

Abstract class for simple instructions with no arguments.

out()

class pyquil.quilbase.UnaryClassicalInstruction(target)
Bases: pyquil.quilbase.AbstractInstruction

The abstract class for unary classical instructions.

out()

class pyquil.quilbase.Wait
Bases: pyquil.quilbase.SimpleInstruction

The WAIT instruction.

op = 'WAIT'

1.10.9 pyquil.wavefunction

Module containing the Wavefunction object and methods for working with wavefunctions.

class pyquil.wavefunction.Wavefunction(amplitude_vector)
Bases: object

Encapsulate a wavefunction representing a quantum state as returned by the QVM.

Note: The elements of the wavefunction are ordered by bitstring. E.g., for two qubits the order is 00, 01,
10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the bitstring 01
indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM Overview.

static from_bit_packed_string(coef_string)
From a bit packed string, unpacks to get the wavefunction :param bytes coef_string: :return:

get_outcome_probs()
Parses a wavefunction (array of complex amplitudes) and returns a dictionary of outcomes and associated
probabilities.
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Returns A dict with outcomes as keys and probabilities as values.

Return type dict

static ground(qubit_num)

plot(qubit_subset=None)
Plots a bar chart with bitstring on the x axis and probability on the y axis.

Parameters qubit_subset (list) – Optional parameter used for plotting a subset of the
Hilbert space.

pretty_print(decimal_digits=2)
Returns a string repr of the wavefunction, ignoring all outcomes with approximately zero amplitude (up to
a certain number of decimal digits) and rounding the amplitudes to decimal_digits.

Parameters decimal_digits (int) – The number of digits to truncate to.

Returns A dict with outcomes as keys and complex amplitudes as values.

Return type str

pretty_print_probabilities(decimal_digits=2)
Prints outcome probabilities, ignoring all outcomes with approximately zero probabilities (up to a certain
number of decimal digits) and rounding the probabilities to decimal_digits.

Parameters decimal_digits (int) – The number of digits to truncate to.

Returns A dict with outcomes as keys and probabilities as values.

Return type dict

probabilities()
Returns an array of probabilities in lexicographical order

sample_bitstrings(n_samples)
Sample bitstrings from the distribution defined by the wavefunction.

Parameters n_samples – The number of bitstrings to sample

Returns An array of shape (n_samples, n_qubits)

static zeros(qubit_num)
Constructs the groundstate wavefunction for a given number of qubits.

Parameters qubit_num (int) –

Returns A Wavefunction in the ground state

Return type Wavefunction

pyquil.wavefunction.get_bitstring_from_index(index, qubit_num)
Returns the bitstring in lexical order that corresponds to the given index in 0 to 2^(qubit_num) :param int index:
:param int qubit_num: :return: the bitstring :rtype: str

1.11 Changelog

1.11.1 v2.0.0 (November 1, 2018)

PyQuil 2.0 is a major release of pyQuil, Rigetti’s toolkit for constructing and running quantum programs. This release
contains many major changes including:
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1. The introduction of Quantum Cloud Services. Access Rigetti’s QPUs from co-located classical compute re-
sources for minimal latency. The web API for running QVM and QPU jobs has been deprecated and cannot be
accessed with pyQuil 2.0

2. Advances in classical control systems and compilation allowing the pre-compilation of parametric binary exe-
cutables for rapid hybrid algorithm iteration.

3. Changes to Quil—our quantum instruction language—to provide easier ways of interacting with classical mem-
ory.

The new QCS access model and features will allow you to execute hybrid quantum algorithms several orders of
magnitude (!) faster than the previous web endpoint. However, to fully exploit these speed increases you must update
your programs to use the latest pyQuil features and APIs. Please read Forest 2.0: Migration Guide for a comprehensive
migration guide.

An incomplete list of significant changes:

• Python 2 is no longer supported. Please use Python 3.6+

• Parametric gates are now normal functions. You can no longer write RX(pi/2)(0) to get a Quil RX(pi/2)
0 instruction. Just use RX(pi/2, 0).

• Gates support keyword arguments, so you can write RX(angle=pi/2, qubit=0).

• All async methods have been removed from QVMConnection and QVMConnection is deprecated.
QPUConnection has been removed in accordance with the QCS access model. Use pyquil.get_qc() as
the primary means of interacting with the QVM or QPU.

• WavefunctionSimulator allows unfettered access to wavefunction properties and routines. These meth-
ods and properties previously lived on QVMConnection and have been deprecated there.

• Classical memory in Quil must be declared with a name and type. Please read Forest 2.0: Migration Guide for
more.

• Compilation has changed. There are now different Compiler objects that target either the QPU or QVM. You
must explicitly compile your programs to run on a QPU or a realistic QVM.

1.11.2 v1.9 (June 6, 2018)

We’re happy to announce the release of pyQuil 1.9. PyQuil is Rigetti’s toolkit for constructing and running quan-
tum programs. This release is the latest in our series of regular releases, and it’s filled with convenience features,
enhancements, bug fixes, and documentation improvements.

Special thanks to community members sethuiyer, vtomole, rht, akarazeev, ejdanderson, markf94, playadust, and
kadora626 for contributing to this release!

Qubit placeholders

One of the focuses of this release is a re-worked concept of “Qubit Placeholders”. These are logical qubits that can
be used to construct programs. Now, a program containing qubit placeholders must be “addressed” prior to running
on a QPU or QVM. The addressing stage involves mapping each qubit placeholder to a physical qubit (represented as
an integer). For example, if you have a 3 qubit circuit that you want to run on different sections of the Agave chip,
you now can prepare one Program and address it to many different subgraphs of the chip topology. Check out the
QubitPlaceholder example notebook for more.

To support this idea, we’ve refactored parts of Pyquil to remove the assumption that qubits can be “sorted”. While
true for integer qubit labels, this probably isn’t true in general. A notable change can be found in the construction of a
PauliSum: now terms will stay in the order they were constructed.
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• PauliTerm now remembers the order of its operations. sX(1)*sZ(2) will compile to different Quil
code than sZ(2)*sX(1), although the terms will still be equal according to the __eq__ method. During
PauliSum combination of like terms, a warning will be emitted if two terms are combined that have different
orders of operation.

• PauliTerm.id() takes an optional argument sort_ops which defaults to True for backwards compatibil-
ity. However, this function should not be used for comparing term-type like it has been used previously. Use
PauliTerm.operations_as_set() instead. In the future, sort_ops will default to False and will
eventually be removed.

• Program.alloc() has been deprecated. Please instantiate QubitPlaceholder() directly or request a
“register” (list) of n placeholders by using the class constructor QubitPlaceholder.register(n)().

• Programs must contain either (1) all instantiated qubits with integer indexes or (2) all placeholder qubits of type
QubitPlaceholder. We have found that most users use (1) but (2) will become useful with larger and more
diverse devices.

• Programs that contain qubit placeholders must be explicitly addressed prior to execution. Previously, qubits
would be assigned “under the hood” to integers 0. . . N. Now, you must use address_qubits()which returns
a new program with all qubits indexed depending on the qubit_mapping argument. The original program is
unaffected and can be “readdressed” multiple times.

• PauliTerm can now accept QubitPlaceholder in addition to integers.

• QubitPlaceholder is no longer a subclass of Qubit. LabelPlaceholder is no longer a subclass of
Label.

• QuilAtom subclasses’ hash functions have changed.

Randomized benchmarking sequence generation

Pyquil now includes support for performing a simple benchmarking routine - randomized benchmarking. There is
a new method in the CompilerConnection that will return sequences of pyquil programs, corresponding to el-
ements of the Clifford group. These programs are uniformly randomly sampled, and have the property that they
compose to the identity. When concatenated and run as one program, these programs can be used in a procedure called
randomized benchmarking to gain insight about the fidelity of operations on a QPU.

In addition, the CompilerConnection has another new method, apply_clifford_to_pauli() which con-
jugates PauliTerms by Program that are composed of Clifford gates. That is to say, given a circuit C, that contains
only gates corresponding to elements of the Clifford group, and a tensor product of elements P, from the Pauli group,
this method will compute $PCP^{dagger}$. Such a procedure can be used in various ways. An example is predicting
the effect a Clifford circuit will have on an input state modeled as a density matrix, which can be written as a sum of
Pauli matrices.

Ease of Use

This release includes some quality-of-life improvements such as the ability to initialize programs with generator ex-
pressions, sensible defaults for Program.measure_all(), and sensible defaults for classical_addresses
in run() methods.

• Program can be initiated with a generator expression.

• Program.measure_all() (with no arguments) will measure all qubits in a program.

• classical_addresses is now optional in QVM and QPU run() methods. By default, any classical
addresses targeted by MEASURE will be returned.

• QVMConnection.pauli_expectation() accepts PauliSum as arguments. This offers a more sensible
API compared to QVMConnection.expectation().
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• pyQuil will now retry jobs every 10 seconds if the QPU is re-tuning.

• CompilerConnection.compile() now takes an optional argument isa that allows per-compilation
specification of the target ISA.

• An empty program will trigger an exception if you try to run it.

Supported versions of Python

We strongly support using Python 3 with Pyquil. Although this release works with Python 2, we are dropping official
support for this legacy language and moving to community support for Python 2. The next major release of Pyquil
will introduce Python 3.5+ only features and will no longer work without modification for Python 2.

Bug fixes

• shift_quantum_gates has been removed. Users who relied on this functionality should use
QubitPlaceholder and address_qubits() to achieve the same result. Users should also double-
check data resulting from use of this function as there were several edge cases which would cause the shift to be
applied incorrectly resulting in badly-addressed qubits.

• Slightly perturbed angles when performing RX gates under a Kraus noise model could result in incorrect behav-
ior.

• The quantum die example returned incorrect values when n = 2^m.

1.12 Introduction to Quantum Computing

With every breakthrough in science there is the potential for new technology. For over twenty years, researchers have
done inspiring work in quantum mechanics, transforming it from a theory for understanding nature into a fundamen-
tally new way to engineer computing technology. This field, quantum computing, is beautifully interdisciplinary, and
impactful in two major ways:

1. It reorients the relationship between physics and computer science. Physics does not just place restrictions on
what computers we can design, it also grants new power and inspiration.

2. It can simulate nature at its most fundamental level, allowing us to solve deep problems in quantum chemistry,
materials discovery, and more.

Quantum computing has come a long way, and in the next few years there will be significant breakthroughs in the
field. To get here, however, we have needed to change our intuition for computation in many ways. As with other
paradigms — such as object-oriented programming, functional programming, distributed programming, or any of the
other marvelous ways of thinking that have been expressed in code over the years — even the basic tenants of quantum
computing opens up vast new potential for computation.

However, unlike other paradigms, quantum computing goes further. It requires an extension of classical probability
theory. This extension, and the core of quantum computing, can be formulated in terms of linear algebra. Therefore,
we begin our investigation into quantum computing with linear algebra and probability.

1.12.1 From Bit to Qubit

Probabilistic Bits as Vector Spaces

From an operational perspective, a bit is described by the results of measurements performed on it. Let the possible
results of measuring a bit (0 or 1) be represented by orthonormal basis vectors \(\vec{0}\) and \(\vec{1}\). We will
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call these vectors outcomes. These outcomes span a two-dimensional vector space that represents a probabilistic bit.
A probabilistic bit can be represented as a vector

𝑣⃗ = 𝑎 0⃗ + 𝑏 1⃗,

where \(a\) represents the probability of the bit being 0 and \(b\) represents the probability of the bit being 1. This
clearly also requires that \(a+b=1\). In this picture the system (the probabilistic bit) is a two-dimensional real vector
space and a state of a system is a particular vector in that vector space.

import numpy as np
import matplotlib.pyplot as plt

outcome_0 = np.array([1.0, 0.0])
outcome_1 = np.array([0.0, 1.0])
a = 0.75
b = 0.25

prob_bit = a*outcome_0 + b*outcome_1

X,Y = prob_bit
plt.figure()
ax = plt.gca()
ax.quiver(X,Y,angles='xy',scale_units='xy',scale=1)
ax.set_xlim([0,1])
ax.set_ylim([0,1])
plt.draw()
plt.show()

Given some state vector, like the one plotted above, we can find the probabilities associated with each outcome by
projecting the vector onto the basis outcomes. This gives us the following rule:

Pr(0) = 𝑣⃗𝑇 .⃗0 = 𝑎

Pr(1) = 𝑣⃗𝑇 .⃗1 = 𝑏,

where Pr(0) and Pr(1) are the probabilities of the 0 and 1 outcomes respectively.
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Dirac Notation

Physicists have introduced a convenient notation for the vector transposes and dot products we used in the previous
example. This notation, called Dirac notation in honor of the great theoretical physicist Paul Dirac, allows us to define

𝑣⃗ = | 𝑣⟩
𝑣⃗𝑇 = ⟨𝑣 |

𝑢⃗𝑇 .𝑣⃗ = ⟨𝑢 | 𝑣⟩.

Thus, we can rewrite our “measurement rule” in this notation as

𝑃𝑟(0) = ⟨𝑣 | 0⟩ = 𝑎

𝑃𝑟(1) = ⟨𝑣 | 1⟩ = 𝑏.

We will use this notation throughout the rest of this introduction.

Multiple Probabilistic Bits

This vector space interpretation of a single probabilistic bit can be straightforwardly extended to multiple bits. Let us
take two coins as an example (labelled 0 and 1 instead of H and T since we are programmers). Their states can be
represented as

|𝑢⟩ =
1

2
| 0𝑢⟩ +

1

2
| 1𝑢⟩

| 𝑣⟩ =
1

2
| 0𝑣⟩ +

1

2
| 1𝑣⟩,

where \(1_u\) represents the 1 outcome on coin \(u\). The combined system of the two coins has four possible
outcomes \(\{ 0_u0_v,\;0_u1_v,\;1_u0_v,\;1_u1_v \}\) that are the basis states of a larger four-dimensional vector
space. The rule for constructing a combined state is to take the tensor product of individual states, e.g.

|𝑢⟩ ⊗ | 𝑣⟩ =
1

4
| 0𝑢0𝑣⟩ +

1

4
| 0𝑢1𝑣⟩ +

1

4
| 1𝑢0𝑣⟩ +

1

4
| 1𝑢1𝑣⟩.

Then, the combined space is simply the space spanned by the tensor products of all pairs of basis vectors of the two
smaller spaces.

We will talk more about these larger spaces in the quantum case, but it is important to note that not all com-
posite states can be written as tensor products of sub-states. (Consider the state \(\frac{1}{2}|\,0_u0_v\rangle +
\frac{1}{2}|\,1_u1_v\rangle\).) In general, the combined state for \(n\) probabilistic bits is a vector of size \(2^n\)
and is given by \(\bigotimes_{i=0}^{n-1}|\,v_i\rangle\).

Qubits

Quantum mechanics rewrites these rules to some extent. A quantum bit, called a qubit, is the quantum analog of a
bit in that it has two outcomes when it is measured. Similar to the previous section, a qubit can also be represented
in a vector space, but with complex coefficients instead of real ones. A qubit system is a two-dimensional complex
vector space, and the state of a qubit is a complex vector in that space. Again we will define a basis of outcomes
\(\{|\,0\rangle, |\,1\rangle\}\) and let a generic qubit state be written as

𝛼| 0⟩ + 𝛽| 1⟩.

Since these coefficients can be imaginary, they cannot be simply interpreted as probabilities of their associated out-
comes. Instead we rewrite the rule for outcomes in the following manner:

Pr(0) = |⟨𝑣 | 0⟩|2 = |𝛼|2

Pr(1) = |⟨𝑣 | 1⟩|2 = |𝛽|2,
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and as long as \(|\alpha|^2 + |\beta|^2 = 1\) we are able to recover acceptable probabilities for outcomes based on our
new complex vector.

This switch to complex vectors means that rather than representing a state vector in a plane, we instead to represent
the vector on a sphere (called the Bloch sphere in quantum mechanics literature). From this perspective the quantum
state corresponding to an outcome of 0 is represented by:

Notice that the two axes in the horizontal plane have been labeled \(x\) and \(y\), implying that \(z\) is the vertical
axis (not labeled). Physicists use the convention that a qubit’s \(\{|\,0\rangle, |\,1\rangle\}\) states are the positive and
negative unit vectors along the z axis, respectively. These axes will be useful later in this document.

Multiple qubits are represented in precisely the same way, but taking tensor products of the spaces and states. Thus
\(n\) qubits have \(2^n\) possible states.

An Important Distinction

An important distinction between the probabilistic case described above and the quantum case is that probabilistic
states may just mask out ignorance. For example a coin is physically only 0 or 1 and the probabilistic view merely
represents our ignorance about which it actually is. This is not the case in quantum mechanics. Assuming events
cannot instantaneously influence one another, the quantum states — as far as we know — cannot mask any underlying
state. This is what people mean when they say that there is no local hidden variable theory for quantum mechanics.
These probabilistic quantum states are as real as it gets: they don’t describe our knowledge of the quantum system,
they describe the physical reality of the system.
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Some Code

Let us take a look at some code in pyQuil to see how these quantum states play out. We will dive deeper into quantum
operations and pyQuil in the following sections. Note that in order to run these examples you will need to install
pyQuil and set up a connection to the Forest API. Each of the code snippets below will be immediately followed by
its output.

# Imports for pyQuil (ignore for now)
import numpy as np
from pyquil.quil import Program
from pyquil.api import QVMConnection
quantum_simulator = QVMConnection()

# pyQuil is based around operations (or gates) so we will start with the most
# basic one: the identity operation, called I. I takes one argument, the index
# of the qubit that it should be applied to.
from pyquil.gates import I

# Make a quantum program that allocates one qubit (qubit #0) and does nothing to it
p = Program(I(0))

# Quantum states are called wavefunctions for historical reasons.
# We can run this basic program on our connection to the simulator.
# This call will return the state of our qubits after we run program p.
# This api call returns a tuple, but we'll ignore the second value for now.
wavefunction = quantum_simulator.wavefunction(p)

# wavefunction is a Wavefunction object that stores a quantum state as a list of
→˓amplitudes
alpha, beta = wavefunction

print("Our qubit is in the state alpha={} and beta={}".format(alpha, beta))
print("The probability of measuring the qubit in outcome 0 is {}".
→˓format(abs(alpha)**2))
print("The probability of measuring the qubit in outcome 1 is {}".
→˓format(abs(beta)**2))

Our qubit is in the state alpha=(1+0j) and beta=0j
The probability of measuring the qubit in outcome 0 is 1.0
The probability of measuring the qubit in outcome 1 is 0.0

Applying an operation to our qubit affects the probability of each outcome.

# We can import the qubit "flip" operation, called X, and see what it does.
# We will learn more about this operation in the next section.
from pyquil.gates import X

p = Program(X(0))

wavefunc = quantum_simulator.wavefunction(p)
alpha, beta = wavefunc

print("Our qubit is in the state alpha={} and beta={}".format(alpha, beta))
print("The probability of measuring the qubit in outcome 0 is {}".
→˓format(abs(alpha)**2))
print("The probability of measuring the qubit in outcome 1 is {}".
→˓format(abs(beta)**2))
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Our qubit is in the state alpha=0j and beta=(1+0j)
The probability of measuring the qubit in outcome 0 is 0.0
The probability of measuring the qubit in outcome 1 is 1.0

In this case we have flipped the probability of outcome 0 into the probability of outcome 1 for our qubit. We can also
investigate what happens to the state of multiple qubits. We’d expect the state of multiple qubits to grow exponentially
in size, as their vectors are tensored together.

# Multiple qubits also produce the expected scaling of the state.
p = Program(I(0), I(1))
wavefunction = quantum_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

p = Program(I(0), I(1), I(2), I(3))
wavefunction = quantum_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

p = Program()
for x in range(10):

p += I(x)
wavefunction = quantum_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes) )

The quantum state is of dimension: 4
The quantum state is of dimension: 16
The quantum state is of dimension: 1024

Let’s look at the actual value for the state of two qubits combined. The resulting dictionary of this method contains
outcomes as keys and the probabilities of those outcomes as values.

# wavefunction(Program) returns a coefficient array that corresponds to outcomes in
→˓the following order
wavefunction = quantum_simulator.wavefunction(Program(I(0), I(1)))
print(wavefunction.get_outcome_probs())

{'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}

1.12.2 Qubit Operations

In the previous section we introduced our first two operations: the I (or identity) operation and the X operation. In
this section we will get into some more details on what these operations are.

Quantum states are complex vectors on the Bloch sphere, and quantum operations are matrices with two properties:

1. They are reversible.

2. When applied to a state vector on the Bloch sphere, the resulting vector is also on the Bloch sphere.

Matrices that satisfy these two properties are called unitary matrices. Applying an operation to a quantum state is the
same as multiplying a vector by one of these matrices. Such an operation is called a gate.

Since individual qubits are two-dimensional vectors, operations on individual qubits are 2x2 matrices. The identity
matrix leaves the state vector unchanged:

𝐼 =

(︂
1 0
0 1

)︂
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so the program that applies this operation to the zero state is just

𝐼 | 0⟩ =

(︂
1 0
0 1

)︂(︂
1
0

)︂
=

(︂
1
0

)︂
= | 0⟩

p = Program(I(0))
print(quantum_simulator.wavefunction(p))

(1+0j)|0>

Pauli Operators

Let’s revisit the X gate introduced above. It is one of three important single-qubit gates, called the Pauli operators:

𝑋 =

(︂
0 1
1 0

)︂
𝑌 =

(︂
0 −𝑖
𝑖 0

)︂
𝑍 =

(︂
1 0
0 −1

)︂

from pyquil.gates import X, Y, Z

p = Program(X(0))
wavefunction = quantum_simulator.wavefunction(p)
print("X|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This looks like a bit flip.\n")

p = Program(Y(0))
wavefunction = quantum_simulator.wavefunction(p)
print("Y|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This also looks like a bit flip.\n")

p = Program(Z(0))
wavefunction = quantum_simulator.wavefunction(p)
print("Z|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This state looks unchanged.")

X|0> = (1+0j)|1>
The outcome probabilities are {'0': 0.0, '1': 1.0}
This looks like a bit flip.

Y|0> = 1j|1>
The outcome probabilities are {'0': 0.0, '1': 1.0}
This also looks like a bit flip.

Z|0> = (1+0j)|0>
The outcome probabilities are {'0': 1.0, '1': 0.0}
This state looks unchanged.

The Pauli matrices have a visual interpretation: they perform 180-degree rotations of qubit state vectors on the Bloch
sphere. They operate about their respective axes as shown in the Bloch sphere depicted above. For example, the X
gate performs a 180-degree rotation about the \(x\) axis. This explains the results of our code above: for a state vector
initially in the +\(z\) direction, both X and Y gates will rotate it to -\(z\), and the Z gate will leave it unchanged.
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However, notice that while the X and Y gates produce the same outcome probabilities, they actually produce different
states. These states are not distinguished if they are measured immediately, but they produce different results in larger
programs.

Quantum programs are built by applying successive gate operations:

# Composing qubit operations is the same as multiplying matrices sequentially
p = Program(X(0), Y(0), Z(0))
wavefunction = quantum_simulator.wavefunction(p)

print("ZYX|0> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

ZYX|0> = [ 0.-1.j 0.+0.j]
With outcome probabilities
{'0': 1.0, '1': 0.0}

Multi-Qubit Operations

Operations can also be applied to composite states of multiple qubits. One common example is the controlled-NOT or
CNOT gate that works on two qubits. Its matrix form is:

𝐶𝑁𝑂𝑇 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
Let’s take a look at how we could use a CNOT gate in pyQuil.

from pyquil.gates import CNOT

p = Program(CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|00> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

p = Program(X(0), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|01> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

p = Program(X(1), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|10> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

p = Program(X(0), X(1), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(p)
print("CNOT|11> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

CNOT|00> = (1+0j)|00>
With outcome probabilities
{'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}

CNOT|01> = (1+0j)|11>

(continues on next page)
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(continued from previous page)

With outcome probabilities
{'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}

CNOT|10> = (1+0j)|10>
With outcome probabilities
{'00': 0.0, '01': 0.0, '10': 1.0, '11': 0.0}

CNOT|11> = (1+0j)|01>
With outcome probabilities
{'00': 0.0, '01': 1.0, '10': 0.0, '11': 0.0}

The CNOT gate does what its name implies: the state of the second qubit is flipped (negated) if and only if the state of
the first qubit is 1 (true).

Another two-qubit gate example is the SWAP gate, which swaps the \( |01\rangle \) and \(|10\rangle \) states:

𝑆𝑊𝐴𝑃 =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠
from pyquil.gates import SWAP
p = Program(X(0), SWAP(0,1))
wavefunction = quantum_simulator.wavefunction(p)

print("SWAP|01> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

SWAP|01> = (1+0j)|10>
With outcome probabilities
{'00': 0.0, '01': 0.0, '10': 1.0, '11': 0.0}

In summary, quantum computing operations are composed of a series of complex matrices applied to complex vectors.
These matrices must be unitary (meaning that their complex conjugate transpose is equal to their inverse) because the
overall probability of all outcomes must always sum to one.

1.12.3 The Quantum Abstract Machine

We now have enough background to introduce the programming model that underlies Quil. This is a hybrid quantum-
classical model in which \(N\) qubits interact with \(M\) classical bits:

122 Chapter 1. Contents



pyQuil Documentation, Release 2.0.0

These qubits and classical bits come with a defined gate set, e.g. which gate operations can be applied to which qubits.
Different kinds of quantum computing hardware place different limitations on what gates can be applied, and the fixed
gate set represents these limitations.

Full details on the Quantum Abstract Machine and Quil can be found in the Quil whitepaper.

The next section on measurements will describe the interaction between the classical and quantum parts of a Quantum
Abstract Machine (QAM).

Qubit Measurements

Measurements have two effects:

1. They project the state vector onto one of the basic outcomes

2. (optional) They store the outcome of the measurement in a classical bit.

Here’s a simple example:

# Create a program that stores the outcome of measuring qubit #0 into classical
→˓register [0]
classical_register_index = 0
p = Program(I(0)).measure(0, classical_register_index)

Up until this point we have used the quantum simulator to cheat a little bit — we have actually looked at the wave-
function that comes back. However, on real quantum hardware, we are unable to directly look at the wavefunction.
Instead we only have access to the classical bits that are affected by measurements. This functionality is emulated by
the run command.

# Choose which classical registers to look in at the end of the computation
classical_regs = [0, 1]
print(quantum_simulator.run(p, classical_regs))

[[0, 0]]

We see that both registers are zero. However, if we had flipped the qubit before measurement then we obtain:
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classical_register_index = 0
p = Program(X(0)) # Flip the qubit
p.measure(0, classical_register_index) # Measure the qubit

classical_regs = [0, 1]
print(quantum_simulator.run(p, classical_regs))

[[1, 0]]

These measurements are deterministic, e.g. if we make them multiple times then we always get the same outcome:

classical_register_index = 0
p = Program(X(0)) # Flip the qubit
p.measure(0, classical_register_index) # Measure the qubit

classical_regs = [0]
trials = 10
print(quantum_simulator.run(p, classical_regs, trials))

[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]

Classical/Quantum Interaction

However this is not the case in general — measurements can affect the quantum state as well. In fact, measurements
act like projections onto the outcome basis states. To show how this works, we first introduce a new single-qubit gate,
the Hadamard gate. The matrix form of the Hadamard gate is:

𝐻 =
1√
2

(︂
1 1
1 −1

)︂
The following pyQuil code shows how we can use the Hadamard gate:

from pyquil.gates import H

# The Hadamard produces what is called a superposition state
coin_program = Program(H(0))
wavefunction = quantum_simulator.wavefunction(coin_program)

print("H|0> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

H|0> = (0.7071067812+0j)|0> + (0.7071067812+0j)|1>
With outcome probabilities
{'0': 0.49999999999999989, '1': 0.49999999999999989}

A qubit in this state will be measured half of the time in the \( |0\rangle \) state, and half of the time in the \( |1\rangle
\) state. In a sense, this qubit truly is a random variable representing a coin. In fact, there are many wavefunctions that
will give this same operational outcome. There is a continuous family of states of the form

1√
2

(︀
| 0⟩ + 𝑒𝑖𝜃| 1⟩

)︀
that represent the outcomes of an unbiased coin. Being able to work with all of these different new states is part of
what gives quantum computing extra power over regular bits.
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# Introduce measurement
classical_reg = 0
coin_program = Program(H(0)).measure(0, classical_reg)
trials = 10

# We see probabilistic results of about half 1's and half 0's
print(quantum_simulator.run(coin_program, [0], trials))

[[0], [1], [1], [0], [1], [0], [0], [1], [0], [0]]

pyQuil allows us to look at the wavefunction after a measurement as well:

classical_reg = 0
coin_program = Program(H(0))
print("Before measurement: H|0> = ", quantum_simulator.wavefunction(coin_program))

coin_program.measure(0, classical_reg)
for x in range(5):

print("After measurement: ", quantum_simulator.wavefunction(coin_program))

Before measurement: H|0> = [ 0.70710678+0.j 0.70710678+0.j]

After measurement: (1+0j)|1>
After measurement: (1+0j)|0>
After measurement: (1+0j)|0>
After measurement: (1+0j)|1>
After measurement: (1+0j)|1>

We can clearly see that measurement has an effect on the quantum state independent of what is stored classically. We
begin in a state that has a 50-50 probability of being \( |0\rangle \) or \( |1\rangle \). After measurement, the state
changes into being entirely in \( |0\rangle \) or entirely in \( |1\rangle \) according to which outcome was obtained.
This is the phenomenon referred to as the collapse of the wavefunction. Mathematically, the wavefunction is being
projected onto the vector of the obtained outcome and subsequently rescaled to unit norm.

# This happens with bigger systems too
classical_reg = 0

# This program prepares something called a Bell state (a special kind of "entangled
→˓state")
bell_program = Program(H(0), CNOT(0, 1))
wavefunction = quantum_simulator.wavefunction(bell_program)
print("Before measurement: Bell state = ", wavefunction)

bell_program.measure(0, classical_reg)
for x in range(5):

wavefunction = quantum_simulator.wavefunction(bell_program)
print("After measurement: ", wavefunction.get_outcome_probs())

Before measurement: Bell state = (0.7071067812+0j)|00> + (0.7071067812+0j)|11>

After measurement: {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}
After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}
After measurement: {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}
After measurement: {'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}
After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}

The above program prepares entanglement because, even though there are random outcomes, after every measurement
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both qubits are in the same state. They are either both \( |0\rangle \) or both \( |1\rangle \). This special kind of
correlation is part of what makes quantum mechanics so unique and powerful.

Classical Control

There are also ways of introducing classical control of quantum programs. For example, we can use the state of
classical bits to determine what quantum operations to run.

true_branch = Program(X(7)) # if branch
false_branch = Program(I(7)) # else branch

# Branch on classical reg [1]
p = Program(X(0)).measure(0, 1).if_then(1, true_branch, false_branch)

# Measure qubit #7 into classical register [7]
p.measure(7, 7)

# Run and check register [7]
print(quantum_simulator.run(p, [7]))

[[1]]

A [1] here means that qubit 7 was indeed flipped.
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Example: The Probabilistic Halting Problem

A fun example is to create a program that has an exponentially increasing chance of halting, but that may run forever!

inside_loop = Program(H(0)).measure(0, 1)

p = Program().inst(X(0)).while_do(1, inside_loop)

# Run and check register [1]
print(quantum_simulator.run(p, [1]))

[[0]]

1.12.4 Next Steps

We hope that you have enjoyed your whirlwind tour of quantum computing. You are now ready to check out the
Installation and Getting Started guide!

If you would like to learn more, Nielsen and Chuang’s Quantum Computation and Quantum Information is a particu-
larly excellent resource for newcomers to the field.

If you’re interested in learning about the software behind quantum computing, take a look at our blog posts on The
Quantum Software Challenge.

1.12. Introduction to Quantum Computing 127

start.html
https://medium.com/@rigetticomputing/the-quantum-software-challenge-1a86eec1ce47
https://medium.com/@rigetticomputing/the-quantum-software-challenge-1a86eec1ce47


pyQuil Documentation, Release 2.0.0

128 Chapter 1. Contents



CHAPTER 2

Indices and Tables

• genindex

• modindex

• search

129



pyQuil Documentation, Release 2.0.0

130 Chapter 2. Indices and Tables



Bibliography

[DensityMatrix] https://en.wikipedia.org/wiki/Density_matrix

131

https://en.wikipedia.org/wiki/Density_matrix


pyQuil Documentation, Release 2.0.0

132 Bibliography



Python Module Index

p
pyquil.api, 62
pyquil.device, 73
pyquil.gates, 79
pyquil.noise, 88
pyquil.parser, 94
pyquil.paulis, 94
pyquil.quil, 98
pyquil.quilbase, 105
pyquil.wavefunction, 110

133



pyQuil Documentation, Release 2.0.0

134 Python Module Index



Index

A
AbstractDevice (class in pyquil.device), 73
AbstractInstruction (class in pyquil.quilbase), 105
ADD() (in module pyquil.gates), 85
add_decoherence_noise() (in module pyquil.noise), 90
address_qubits() (in module pyquil.quil), 103
alloc() (pyquil.quil.Program method), 98
AND() (in module pyquil.gates), 84
append_kraus_to_gate() (in module pyquil.noise), 90
apply_clifford_to_pauli()

(pyquil.api.BenchmarkConnection method), 72
apply_clifford_to_pauli()

(pyquil.api.LocalBenchmarkConnection
method), 73

apply_noise_model() (in module pyquil.noise), 90
ArithmeticBinaryOp (class in pyquil.quilbase), 105
asdict() (pyquil.quilbase.Declare method), 108
augment_program_with_memory_values()

(pyquil.api.QVM method), 71

B
BenchmarkConnection (class in pyquil.api), 72
bitstring_probs_to_z_moments() (in module

pyquil.noise), 91

C
CCNOT() (in module pyquil.gates), 81
check_commutation() (in module pyquil.paulis), 95
ClassicalAdd (class in pyquil.quilbase), 105
ClassicalAnd (class in pyquil.quilbase), 105
ClassicalComparison (class in pyquil.quilbase), 105
ClassicalConvert (class in pyquil.quilbase), 105
ClassicalDiv (class in pyquil.quilbase), 106
ClassicalEqual (class in pyquil.quilbase), 106
ClassicalExchange (class in pyquil.quilbase), 106
ClassicalExclusiveOr (class in pyquil.quilbase), 106
ClassicalFalse (class in pyquil.quilbase), 106
ClassicalGreaterEqual (class in pyquil.quilbase), 106
ClassicalGreaterThan (class in pyquil.quilbase), 106

ClassicalInclusiveOr (class in pyquil.quilbase), 106
ClassicalLessEqual (class in pyquil.quilbase), 106
ClassicalLessThan (class in pyquil.quilbase), 106
ClassicalLoad (class in pyquil.quilbase), 107
ClassicalMove (class in pyquil.quilbase), 107
ClassicalMul (class in pyquil.quilbase), 107
ClassicalNeg (class in pyquil.quilbase), 107
ClassicalNot (class in pyquil.quilbase), 107
ClassicalOr (class in pyquil.quilbase), 107
ClassicalStore (class in pyquil.quilbase), 107
ClassicalSub (class in pyquil.quilbase), 107
ClassicalTrue (class in pyquil.quilbase), 107
CNOT() (in module pyquil.gates), 81
combine_kraus_maps() (in module pyquil.noise), 91
commuting_sets() (in module pyquil.paulis), 96
compile() (pyquil.api.QuantumComputer method), 68
compiled_quil() (pyquil.api.Job method), 65
CONVERT() (in module pyquil.gates), 87
copy() (pyquil.paulis.PauliTerm method), 95
copy() (pyquil.quil.Program method), 98
correct_bitstring_probs() (in module pyquil.noise), 91
corrupt_bitstring_probs() (in module pyquil.noise), 92
CPHASE() (in module pyquil.gates), 82
CPHASE00() (in module pyquil.gates), 81
CPHASE01() (in module pyquil.gates), 81
CPHASE10() (in module pyquil.gates), 82
CSWAP() (in module pyquil.gates), 83
CZ() (in module pyquil.gates), 80

D
dagger() (pyquil.quil.Program method), 98
damping_after_dephasing() (in module pyquil.noise), 92
damping_kraus_map() (in module pyquil.noise), 92
dead (pyquil.device.Edge attribute), 74
dead (pyquil.device.Qubit attribute), 76
Declare (class in pyquil.quilbase), 108
declare() (pyquil.quil.Program method), 98
decode() (pyquil.api.Job method), 65
decoherence_noise_with_asymmetric_ro() (in module

pyquil.noise), 92

135



pyQuil Documentation, Release 2.0.0

DefGate (class in pyquil.quilbase), 108
defgate() (pyquil.quil.Program method), 99
define_noisy_gate() (pyquil.quil.Program method), 99
define_noisy_readout() (pyquil.quil.Program method), 99
defined_gates (pyquil.quil.Program attribute), 100
dephasing_kraus_map() (in module pyquil.noise), 92
Device (class in pyquil.api), 66
Device (class in pyquil.device), 74
DIV() (in module pyquil.gates), 86

E
Edge (class in pyquil.device), 74
edges() (pyquil.device.NxDevice method), 75
EdgeSpecs (in module pyquil.device), 74
EQ() (in module pyquil.gates), 86
estimate_assignment_probs() (in module pyquil.noise),

92
estimate_bitstring_probs() (in module pyquil.noise), 93
estimated_time_left_in_queue() (pyquil.api.Job method),

65
EXCHANGE() (in module pyquil.gates), 85
expectation() (pyquil.api.QVMConnection method), 62
expectation() (pyquil.api.WavefunctionSimulator

method), 67
exponential_map() (in module pyquil.paulis), 96
exponentiate() (in module pyquil.paulis), 96
exponentiate_commuting_pauli_sum() (in module

pyquil.paulis), 96

F
f1QRBs() (pyquil.device.Specs method), 76
fActiveResets() (pyquil.device.Specs method), 77
FALSE() (in module pyquil.gates), 84
fBellStates() (pyquil.device.Specs method), 77
fCPHASEs() (pyquil.device.Specs method), 77
fCZs() (pyquil.device.Specs method), 77
ForestConnection (class in pyquil.api), 67
from_bit_packed_string()

(pyquil.wavefunction.Wavefunction static
method), 110

from_dict() (pyquil.device.ISA static method), 75
from_dict() (pyquil.device.Specs static method), 77
from_dict() (pyquil.noise.KrausModel static method), 88
from_dict() (pyquil.noise.NoiseModel static method), 89
from_list() (pyquil.paulis.PauliTerm class method), 95
fROs() (pyquil.device.Specs method), 77

G
Gate (class in pyquil.gates), 87
Gate (class in pyquil.quilbase), 108
gate() (pyquil.quil.Program method), 100
gate_depth() (pyquil.api.Job method), 65
gate_volume() (pyquil.api.Job method), 65
gates_by_name() (pyquil.noise.NoiseModel method), 89

gates_in_isa() (in module pyquil.device), 78
GE() (in module pyquil.gates), 86
generate_rb_sequence() (pyquil.api.BenchmarkConnection

method), 72
generate_rb_sequence() (pyquil.api.LocalBenchmarkConnection

method), 73
get() (pyquil.api.Job method), 65
get_benchmarker() (in module pyquil.api), 73
get_bitstring_from_index() (in module

pyquil.wavefunction), 111
get_classical_addresses_from_program() (in module

pyquil.quil), 103
get_constructor() (pyquil.quilbase.DefGate method), 108
get_default_qubit_mapping() (in module pyquil.quil),

103
get_isa() (pyquil.api.Device method), 66
get_isa() (pyquil.api.QuantumComputer method), 68
get_isa() (pyquil.device.AbstractDevice method), 73
get_isa() (pyquil.device.Device method), 74
get_isa() (pyquil.device.NxDevice method), 76
get_noisy_gate() (in module pyquil.noise), 93
get_outcome_probs() (pyquil.wavefunction.Wavefunction

method), 110
get_programs() (pyquil.paulis.PauliSum method), 94
get_qc() (in module pyquil.api), 69
get_qubits() (pyquil.gates.Gate method), 87
get_qubits() (pyquil.paulis.PauliSum method), 94
get_qubits() (pyquil.paulis.PauliTerm method), 95
get_qubits() (pyquil.quil.Program method), 100
get_qubits() (pyquil.quilbase.Gate method), 108
get_qubits() (pyquil.quilbase.Measurement method), 109
get_qubits() (pyquil.quilbase.ResetQubit method), 110
get_specs() (pyquil.api.Device method), 66
get_specs() (pyquil.device.AbstractDevice method), 73
get_specs() (pyquil.device.Device method), 74
get_specs() (pyquil.device.NxDevice method), 76
get_version_info() (pyquil.api.LocalQVMCompiler

method), 64
get_version_info() (pyquil.api.QPU method), 72
get_version_info() (pyquil.api.QPUCompiler method), 64
get_version_info() (pyquil.api.QVM method), 71
get_version_info() (pyquil.api.QVMCompiler method),

64
get_version_info() (pyquil.api.QVMConnection method),

62
ground() (pyquil.wavefunction.Wavefunction static

method), 111
GT() (in module pyquil.gates), 86

H
H() (in module pyquil.gates), 79
Halt (class in pyquil.quilbase), 108
HALT (in module pyquil.gates), 84
HASH_PRECISION (in module pyquil.paulis), 94

136 Index



pyQuil Documentation, Release 2.0.0

I
I() (in module pyquil.gates), 79
id (pyquil.device.Qubit attribute), 76
ID() (in module pyquil.paulis), 94
id() (pyquil.paulis.PauliTerm method), 95
if_then() (pyquil.quil.Program method), 100
implicitly_declare_ro() (in module pyquil.quil), 103
INFINITY (in module pyquil.noise), 88
inst() (pyquil.quil.Program method), 101
instantiate_labels() (in module pyquil.quil), 104
instructions (pyquil.quil.Program attribute), 101
integer_types (in module pyquil.paulis), 96
IOR() (in module pyquil.gates), 85
is_compiling() (pyquil.api.Job method), 65
is_done() (pyquil.api.Job method), 65
is_identity() (in module pyquil.paulis), 96
is_protoquil() (pyquil.quil.Program method), 101
is_queued() (pyquil.api.Job method), 65
is_queued_for_compilation() (pyquil.api.Job method), 65
is_running() (pyquil.api.Job method), 65
is_zero() (in module pyquil.paulis), 96
ISA (class in pyquil.device), 74
isa (pyquil.api.Device attribute), 67
isa (pyquil.device.Device attribute), 74
isa_from_graph() (in module pyquil.device), 78
isa_to_graph() (in module pyquil.device), 78
ISWAP() (in module pyquil.gates), 83

J
Job (class in pyquil.api), 65
job_id (pyquil.api.Job attribute), 65
Jump (class in pyquil.quilbase), 108
JumpConditional (class in pyquil.quilbase), 109
JumpTarget (class in pyquil.quilbase), 109
JumpUnless (class in pyquil.quilbase), 109
JumpWhen (class in pyquil.quilbase), 109

K
KrausModel (class in pyquil.noise), 88

L
LE() (in module pyquil.gates), 87
list_quantum_computers() (in module pyquil.api), 69
LOAD() (in module pyquil.gates), 87
load() (pyquil.api.QAM method), 71
load() (pyquil.api.QVM method), 71
LocalBenchmarkConnection (class in pyquil.api), 72
LocalQVMCompiler (class in pyquil.api), 64
LogicalBinaryOp (class in pyquil.quilbase), 109
LT() (in module pyquil.gates), 87

M
MEASURE() (in module pyquil.gates), 84

measure() (pyquil.quil.Program method), 102
measure_all() (pyquil.quil.Program method), 102
Measurement (class in pyquil.quilbase), 109
merge_programs() (in module pyquil.quil), 104
merge_with_pauli_noise() (in module pyquil.quil), 104
MOVE() (in module pyquil.gates), 85
MUL() (in module pyquil.gates), 86
multiqubit_gate_depth() (pyquil.api.Job method), 65

N
native_quil_to_executable()

(pyquil.api.LocalQVMCompiler method),
64

native_quil_to_executable() (pyquil.api.QPUCompiler
method), 64

native_quil_to_executable() (pyquil.api.QVMCompiler
method), 64

NEG() (in module pyquil.gates), 85
no_noise() (pyquil.quil.Program method), 102
NoiseModel (class in pyquil.noise), 89
NoisyGateUndefined, 89
Nop (class in pyquil.quilbase), 109
NOP (in module pyquil.gates), 84
NOT() (in module pyquil.gates), 84
num_args() (pyquil.quilbase.DefGate method), 108
NxDevice (class in pyquil.device), 75

O
op (pyquil.quilbase.ClassicalAdd attribute), 105
op (pyquil.quilbase.ClassicalAnd attribute), 105
op (pyquil.quilbase.ClassicalConvert attribute), 105
op (pyquil.quilbase.ClassicalDiv attribute), 106
op (pyquil.quilbase.ClassicalEqual attribute), 106
op (pyquil.quilbase.ClassicalExchange attribute), 106
op (pyquil.quilbase.ClassicalExclusiveOr attribute), 106
op (pyquil.quilbase.ClassicalGreaterEqual attribute), 106
op (pyquil.quilbase.ClassicalGreaterThan attribute), 106
op (pyquil.quilbase.ClassicalInclusiveOr attribute), 106
op (pyquil.quilbase.ClassicalLessEqual attribute), 106
op (pyquil.quilbase.ClassicalLessThan attribute), 107
op (pyquil.quilbase.ClassicalLoad attribute), 107
op (pyquil.quilbase.ClassicalMove attribute), 107
op (pyquil.quilbase.ClassicalMul attribute), 107
op (pyquil.quilbase.ClassicalNeg attribute), 107
op (pyquil.quilbase.ClassicalNot attribute), 107
op (pyquil.quilbase.ClassicalStore attribute), 107
op (pyquil.quilbase.ClassicalSub attribute), 107
op (pyquil.quilbase.Halt attribute), 108
op (pyquil.quilbase.JumpUnless attribute), 109
op (pyquil.quilbase.JumpWhen attribute), 109
op (pyquil.quilbase.Nop attribute), 109
op (pyquil.quilbase.Reset attribute), 110
op (pyquil.quilbase.Wait attribute), 110
operations_as_set() (pyquil.paulis.PauliTerm method), 95

Index 137



pyQuil Documentation, Release 2.0.0

OR() (in module pyquil.gates), 84
out() (pyquil.gates.Gate method), 88
out() (pyquil.quil.Program method), 102
out() (pyquil.quilbase.AbstractInstruction method), 105
out() (pyquil.quilbase.ArithmeticBinaryOp method), 105
out() (pyquil.quilbase.ClassicalComparison method), 105
out() (pyquil.quilbase.ClassicalConvert method), 105
out() (pyquil.quilbase.ClassicalExchange method), 106
out() (pyquil.quilbase.ClassicalLoad method), 107
out() (pyquil.quilbase.ClassicalMove method), 107
out() (pyquil.quilbase.ClassicalStore method), 107
out() (pyquil.quilbase.Declare method), 108
out() (pyquil.quilbase.DefGate method), 108
out() (pyquil.quilbase.Gate method), 108
out() (pyquil.quilbase.Jump method), 109
out() (pyquil.quilbase.JumpConditional method), 109
out() (pyquil.quilbase.JumpTarget method), 109
out() (pyquil.quilbase.LogicalBinaryOp method), 109
out() (pyquil.quilbase.Measurement method), 109
out() (pyquil.quilbase.Pragma method), 109
out() (pyquil.quilbase.RawInstr method), 110
out() (pyquil.quilbase.ResetQubit method), 110
out() (pyquil.quilbase.SimpleInstruction method), 110
out() (pyquil.quilbase.UnaryClassicalInstruction

method), 110

P
parse() (in module pyquil.parser), 94
parse_program() (in module pyquil.parser), 94
pauli_expectation() (pyquil.api.QVMConnection

method), 62
pauli_kraus_map() (in module pyquil.noise), 93
pauli_string() (pyquil.paulis.PauliTerm method), 95
PauliSum (class in pyquil.paulis), 94
PauliTerm (class in pyquil.paulis), 94
percolate_declares() (in module pyquil.quil), 104
PHASE() (in module pyquil.gates), 80
plot() (pyquil.wavefunction.Wavefunction method), 111
pop() (pyquil.quil.Program method), 102
position_in_queue() (pyquil.api.Job method), 66
Pragma (class in pyquil.quilbase), 109
pretty_print() (pyquil.wavefunction.Wavefunction

method), 111
pretty_print_probabilities()

(pyquil.wavefunction.Wavefunction method),
111

probabilities() (pyquil.wavefunction.Wavefunction
method), 111

Program (class in pyquil.quil), 98
program (pyquil.paulis.PauliTerm attribute), 95
program_fidelity() (pyquil.api.Job method), 66
PSWAP() (in module pyquil.gates), 83
pyquil.api (module), 62
pyquil.device (module), 73

pyquil.gates (module), 79
pyquil.noise (module), 88
pyquil.parser (module), 94
pyquil.paulis (module), 94
pyquil.quil (module), 98
pyquil.quilbase (module), 105
pyquil.wavefunction (module), 110
pyquil_protect() (in module pyquil.api), 67

Q
QAM (class in pyquil.api), 70
QPU (class in pyquil.api), 72
QPUCompiler (class in pyquil.api), 64
QuantumComputer (class in pyquil.api), 68
Qubit (class in pyquil.device), 76
qubit_topology() (pyquil.api.Device method), 67
qubit_topology() (pyquil.api.QuantumComputer

method), 68
qubit_topology() (pyquil.device.AbstractDevice method),

74
qubit_topology() (pyquil.device.Device method), 74
qubit_topology() (pyquil.device.NxDevice method), 76
qubits() (pyquil.api.Device method), 67
qubits() (pyquil.api.QuantumComputer method), 68
qubits() (pyquil.device.AbstractDevice method), 74
qubits() (pyquil.device.Device method), 74
qubits() (pyquil.device.NxDevice method), 76
QubitSpecs (in module pyquil.device), 76
quil_to_native_quil() (pyquil.api.LocalQVMCompiler

method), 64
quil_to_native_quil() (pyquil.api.QPUCompiler method),

65
quil_to_native_quil() (pyquil.api.QVMCompiler

method), 64
QVM (class in pyquil.api), 71
QVMCompiler (class in pyquil.api), 64
QVMConnection (class in pyquil.api), 62

R
RawInstr (class in pyquil.quilbase), 109
read_from_memory_region() (pyquil.api.QAM method),

71
read_memory() (pyquil.api.QAM method), 71
Reset (class in pyquil.quilbase), 110
RESET() (in module pyquil.gates), 83
reset() (pyquil.quil.Program method), 102
ResetQubit (class in pyquil.quilbase), 110
result() (pyquil.api.Job method), 66
run() (pyquil.api.QAM method), 71
run() (pyquil.api.QPU method), 72
run() (pyquil.api.QuantumComputer method), 68
run() (pyquil.api.QVM method), 71
run() (pyquil.api.QVMConnection method), 63

138 Index



pyQuil Documentation, Release 2.0.0

run_and_measure() (pyquil.api.QuantumComputer
method), 68

run_and_measure() (pyquil.api.QVMConnection
method), 63

run_and_measure() (pyquil.api.WavefunctionSimulator
method), 67

run_symmetrized_readout()
(pyquil.api.QuantumComputer method),
69

running_time() (pyquil.api.Job method), 66
RX() (in module pyquil.gates), 80
RY() (in module pyquil.gates), 80
RZ() (in module pyquil.gates), 80

S
S() (in module pyquil.gates), 79
sample_bitstrings() (pyquil.wavefunction.Wavefunction

method), 111
sI() (in module pyquil.paulis), 96
SimpleInstruction (class in pyquil.quilbase), 110
simplify() (pyquil.paulis.PauliSum method), 94
simplify_pauli_sum() (in module pyquil.paulis), 97
Specs (class in pyquil.device), 76
specs_from_graph() (in module pyquil.device), 78
STORE() (in module pyquil.gates), 87
SUB() (in module pyquil.gates), 85
suzuki_trotter() (in module pyquil.paulis), 97
SWAP() (in module pyquil.gates), 82
sX() (in module pyquil.paulis), 97
sY() (in module pyquil.paulis), 97
sZ() (in module pyquil.paulis), 97

T
T() (in module pyquil.gates), 79
T1s() (pyquil.device.Specs method), 76
T2s() (pyquil.device.Specs method), 76
targets (pyquil.device.Edge attribute), 74
tensor_kraus_maps() (in module pyquil.noise), 94
term_with_coeff() (in module pyquil.paulis), 97
THETA (in module pyquil.device), 78
time_in_queue() (pyquil.api.Job method), 66
to_dict() (pyquil.device.ISA method), 75
to_dict() (pyquil.device.Specs method), 77
to_dict() (pyquil.noise.KrausModel method), 88
to_dict() (pyquil.noise.NoiseModel method), 89
topological_swaps() (pyquil.api.Job method), 66
trotterize() (in module pyquil.paulis), 97
TRUE() (in module pyquil.gates), 84
type (pyquil.device.Edge attribute), 74
type (pyquil.device.Qubit attribute), 76

U
UnaryClassicalInstruction (class in pyquil.quilbase), 110
UnequalLengthWarning, 95

unpack_kraus_matrix() (pyquil.noise.KrausModel static
method), 88

V
validate_protoquil() (in module pyquil.quil), 105

W
Wait (class in pyquil.quilbase), 110
WAIT (in module pyquil.gates), 83
wait() (pyquil.api.QAM method), 71
Wavefunction (class in pyquil.wavefunction), 110
wavefunction() (pyquil.api.QVMConnection method), 63
wavefunction() (pyquil.api.WavefunctionSimulator

method), 68
WavefunctionSimulator (class in pyquil.api), 67
while_do() (pyquil.quil.Program method), 102
wrap_in_numshots_loop() (pyquil.quil.Program method),

103
write_memory() (pyquil.api.QAM method), 71

X
X() (in module pyquil.gates), 79
XOR() (in module pyquil.gates), 85

Y
Y() (in module pyquil.gates), 79

Z
Z() (in module pyquil.gates), 79
ZERO() (in module pyquil.paulis), 95
zeros() (pyquil.wavefunction.Wavefunction static

method), 111

Index 139


	Contents
	Installation and Getting Started
	Upgrading or Installing pyQuil
	Downloading the QVM and Compiler
	Getting Started

	Forest 2.0: Migration Guide
	What’s changed
	Overview of Updates to Quil and pyQuil
	Parametric programs
	Details of updates to Quil
	Backwards compatibility
	Details of pyQuil and Forest updates
	Backwards compatibility and migration
	Miscellanea
	Error reporting

	Programs and Gates
	Introduction
	The Standard Gate Set
	Declaring Memory
	Measurement
	Parametric Compilation
	Defining New Gates
	Defining Parametric Gates
	Pragmas
	Ways to Construct Programs
	QPU-allowable Quil

	The Quantum Virtual Machine (QVM)
	Using the QVM
	Multi-Qubit Basis Enumeration
	Simulating the QPU using the QVM
	Examples of Quantum Programs

	The Wavefunction Simulator
	Meyer-Penny Game

	The Quil Compiler
	Expectations for Program Contents
	Interacting with the Compiler
	Legal compiler input
	Region-specific compiler features through PRAGMA
	Common Error Messages

	Noise and Quantum Computation
	Modeling Noisy Quantum Gates
	Noisy Gates on the Rigetti QVM
	Adding Decoherence Noise
	Modeling Readout Noise
	Working with Readout Noise

	Advanced Usage
	Using Qubit Placeholders
	Quantum Fourier Transform (QFT)
	Classical Control Flow
	Parametric Depolarizing Noise
	Parametric Programs
	Pauli Operator Algebra

	Exercises
	Exercise 1: Quantum Dice
	Exercise 2: Controlled Gates
	Exercise 3: Grover’s Algorithm

	Source Code Documentation
	pyquil.api
	pyquil.device
	pyquil.gates
	pyquil.noise
	pyquil.parser
	pyquil.paulis
	pyquil.quil
	pyquil.quilbase
	pyquil.wavefunction

	Changelog
	v2.0.0 (November 1, 2018)
	v1.9 (June 6, 2018)

	Introduction to Quantum Computing
	From Bit to Qubit
	Qubit Operations
	The Quantum Abstract Machine
	Next Steps


	Indices and Tables
	Bibliography
	Python Module Index

