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The Rigetti Forest Software Development Kit includes pyQuil, the Rigetti Quil Compiler (quilc), and the Quantum
Virtual Machine (qvm).

Longtime users of Rigetti Forest will notice a few changes. First, the SDK now contains a downloadable compiler
and a QVM. Second, the SDK contains pyQuil 2.0, with significant updates to previous versions. As a result, programs
written using previous versions of the Forest toolkit will need to be updated to pyQuil 2.0 to be compatible with the
QVM or compiler.

After installing the SDK and updating pyQuil in Installation and Getting Started, see the migration guide to get caught
up on what’s new!

Quantum Cloud Services will provide users with a dedicated Quantum Machine Image, which will come prepackaged
with the Forest SDK. We’re releasing a Preview to the Forest SDK now, so current users can begin migrating code
(and share feedback with us early and often!). Longtime Forest users should start with the Migration Guide which
outlines key changes in this SDK Preview release.

If you’re new to Forest, we hope this documentation will provide everything you need to get up and running with the
toolkit. Once you’ve oriented yourself here, proceed to the section Installation and Getting Started to get started. If
you’re new to quantum computing, you also go to our section on Introduction to Quantum Computing. There, you’ll
learn the basic concepts needed to write quantum software. You can also work through an introduction to quantum
computing in a jupyter notebook; launch the notebook from the source folder in pyquil’s docs:

A few terms to orient you as you get started with Forest:

1. pyQuil: An open source Python library to help you write and run quantum programs. The source is hosted on
github.

2. Quil: The Quantum Instruction Language standard. Instructions written in Quil can be executed on any imple-
mentation of a quantum abstract machine, such as the quantum virtual machine (QVM), or on a real quantum
processing unit (QPU). More details regarding Quil can be found in the whitepaper, A Practical Quantum In-
struction Set Architecture.

3. QVM: The Quantum Virtual Machine is an open source implementation of a quantum abstract machine on
classical hardware. The QVM lets you use a regular computer to simulate a small quantum computer and
execute Quil programs. Find QVM on GitHub.

4. QPU: Quantum processing unit. This refers to the physical hardware chip which we run quantum programs on.

5. Quil Compiler: The compiler, quilc, compiles Quil written for one quantum abstract machine (QAM) to
another. Our open source compiler will take arbitrary Quil and compile it for the given QAM, according to its
supported instruction set architecture. Find quilc on GitHub.

6. Forest SDK: Our software development kit, optimized for near-term quantum computers that operate as co-
processors, working in concert with traditional processors to run hybrid quantum-classical algorithms. For
references on problems addressable with near-term quantum computers, see Quantum Computing in the NISQ
era and beyond.

Our flagship product Quantum Cloud Services offers users an on-premise, dedicated access point to our quantum
computers. This access point is a fully-configured VM, which we call a Quantum Machine Image. A QMI is bundled
with the same downloadable SDK mentioned above, and a command line interface (CLI), which is used for scheduling
compute time on our quantum computers. To sign up for our waitlist, please click the link above. If you’d like to access
to our quantum computers for research, please email support@rigetti.com.

Note: To join our user community, connect to the Rigetti Slack workspace at https://rigetti-forest.slack.com.
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CHAPTER 1

Contents

1.1 Installation and Getting Started

To make full use of the Rigetti Forest SDK, you will need pyQuil, the QVM, and the Quil Compiler. On this page,
we will take you through the process of installing all three of these. We also step you through running a basic pyQuil
program.

Note: If you’re running from a Quantum Machine Image, installation has been completed for you. Continue to
Getting Started.

1.1.1 Upgrading or Installing pyQuil

PyQuil 2.0 is our library for generating and executing Quil programs on the Rigetti Forest platform.

Before you install, we recommend that you activate a Python 3.6+ virtual environment. Then, install pyQuil using pip:

pip install pyquil

For those of you that already have pyQuil, you can upgrade with:

pip install --upgrade pyquil

If you would like to stay up to date with the latest changes and bug fixes, you can also opt to install pyQuil from the
source here.

Note: PyQuil requires Python 3.6 or later.

3
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1.1.2 Downloading the QVM and Compiler

The Forest 2.0 Downloadable SDK Preview currently contains:

• The Rigetti Quantum Virtual Machine (qvm) which allows high-performance simulation of Quil programs

• The Rigetti Quil Compiler (quilc) which allows compilation and optimization of Quil programs to native gate
sets

The QVM and the compiler are packed as program binaries that are accessed through the command line. Both of them
provide support for direct command-line interaction, as well as a server mode. The server mode is required for use
with pyQuil.

Request the Forest SDK here. You’ll receive an email right away with the download links for macOS, Linux (.deb),
Linux (.rpm), and Linux (bare-bones).

All installation mechanisms, except the bare-bones package, require administrative privileges to install. To use the
QVM and Quil Compiler from the bare-bones package, you will have to install the prerequisite dependencies on your
own.

Note: You can also find the open source code for quilc and qvm on GitHub, where you can find instructions for
compiling, installing, and contributing to the compiler and QVM.

Installing on macOS

Mount the file forest-sdk.dmg by double clicking on it in your email. From there, open forest-sdk.pkg by
double-clicking on it. Follow the installation instructions.

Upon successful installation, one should be able to open a new terminal window and run the following two commands:

qvm --version
quilc --version

To uninstall, delete the following files:

/usr/local/bin/qvm
/usr/local/bin/quilc
/usr/local/share/man/man1/qvm.1
/usr/local/share/man/man1/quilc.1

Installing the QVM and Compiler on Linux (deb)

Download the Debian distribution by clicking on the link in your email. Unpack the tarball and change to that directory
by doing:

tar -xf forest-sdk-linux-deb.tar.bz2
cd forest-sdk-2.0rc2-linux-deb

From here, run the following command:

sudo ./forest-sdk-2.0rc2-linux-deb.run

Upon successful installation, one should be able to run the following two commands:
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qvm --version
quilc --version

To uninstall, type:

sudo apt remove forest-sdk

Installing the QVM and Compiler on Linux (rpm)

Download the RPM-based distribution by clicking on the link in your email. Unpack the tarball and change to that
directory by doing:

tar -xf forest-sdk-linux-rpm.tar.bz2
cd forest-sdk-2.0rc2-linux-rpm

From here, run the following command:

sudo ./forest-sdk-2.0rc2-linux-rpm.run

Upon successful installation, one should be able to run the following two commands:

qvm --version
quilc --version

To uninstall, type:

sudo rpm -e forest-sdk
# or
sudo yum uninstall forest-sdk

Installing the QVM and Compiler on Linux (bare-bones)

The bare-bones installation only contains the executable binaries and manual pages, and doesn’t contain any of the
requisite dynamic libraries. As such, installation doesn’t require administrative or sudo privileges.

First, unpack the tarball and change to that directory by doing:

tar -xf forest-sdk-linux-barebones.tar.bz2
cd forest-sdk-2.1-linux-barebones

From here, run the following command:

./forest-sdk-2.1-linux-barebones.run

Upon successful installation, this will have created a new directory rigetti in your home directory that contains all
of the binary and documentation artifacts.

This method of installation requires one, through whatever means, to install shared libraries for BLAS, LAPACK, and
libffi. On a Debian-derivative system, this could be accomplished with

sudo apt-get install liblapack-dev libblas-dev libffi-dev libzmq3-dev

Or on any rhel-derivative systems (e.g. Amazon Linux) with

1.1. Installation and Getting Started 5
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sudo yum install -y lapack-devel blas-devel epel-release
sudo yum install -y zeromq3-devel

To uninstall, remove the directory ~/rigetti.

1.1.3 Getting Started

To get started using the SDK, you can either interact with the QVM and the compiler directly from the command line,
or you can run them in server mode and use them with pyQuil. In this section, we’re going to explain how to do the
latter.

For more information about directly interacting with the QVM and the compiler, refer to their respective manual pages.
After installation, you can read the manual pages by opening a new terminal window and typing man qvm (for the
QVM) or man quilc (for the compiler). Quit out of the manual page by typing q.

Setting Up Server Mode for PyQuil

Note: This set up is only necessary to run pyQuil locally. If you’re running in a QMI, this has already been done for
you.

It’s easy to start up local servers for the QVM and quilc on your laptop. You should have two terminal windows open
to run in the background. We recommend using a resource such as tmux for running and managing multiple programs
in one terminal.

### CONSOLE 1
$ qvm -S

Welcome to the Rigetti QVM
(Configured with 10240 MiB of workspace and 8 workers.)
[2018-09-20 15:39:50] Starting server on port 5000.

### CONSOLE 2
$ quilc -S

... - Launching quilc.

... - Spawning server at (tcp://*:5555) .

That’s it! You’re all set up to run pyQuil locally. Your programs will make requests to these server endpoints to
compile your Quil programs to native Quil, and to simulate those programs on the QVM.

NOTE: We are transitioning from using an HTTP quilc server to an RPCQ one. In the near term, -S will spawn an
HTTP server at port 6000 and an RPCQ server at port 5555 (accessible via tcp://localhost:5555).

Run Your First Program

Now that our local endpoints are up and running, we can start running pyQuil programs! We will run a simple program
on the Quantum Virtual Machine (QVM).

The program we will create prepares a fully entangled state between two qubits, called a Bell State. This state is in an
equal superposition between |00 and |11, meaning that it is equally likely that a measurement will result in measuring
both qubits in the ground state or both qubits in the excited state. For more details about the physics behind these
concepts, see Introduction to Quantum Computing.
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To begin, start up python however you like. You can open a jupyter notebook (type jupyter notebook in your
terminal), open an interactive python notebook in your terminal (with ipython3), or simply launch python in your
terminal (type python3). Recall that you need Python 3.6+ to use pyQuil.

Import a few things from pyQuil:

from pyquil import Program, get_qc
from pyquil.gates import *

The Program object allows us to build up a Quil program. get_qc() connects us to a QuantumComputer
object, which specifies what our program should run on (see: The Quantum Computer). We’ve also imported all (*)
gates from the pyquil.gates module, which allows us to add operations to our program (Programs and Gates).

Note: PyQuil also provides a handy function for you to ensure that a local qvm and quilc are currently running in your
environment. To make sure both are available you import from pyquil.api import local_qvm and then run local_qvm().
This will start a qvm and quilc instances using subprocesses if they have not already been started. You can also use it
as a context manager as in the following example:

from pyquil import get_qc, Program
from pyquil.gates import CNOT, Z
from pyquil.api import local_qvm

qvm = get_qc('9q-square-qvm')
prog = Program(Z(0), CNOT(0, 1))

with local_qvm():
results = qvm.run_and_measure(prog, trials=10)

Next, let’s construct our Bell State.

# construct a Bell State program
p = Program(H(0), CNOT(0, 1))

We’ve accomplished this by driving qubit 0 into a superposition state (that’s what the “H” gate does), and then creating
an entangled state between qubits 0 and 1 (that’s what the “CNOT” gate does). Finally, we’ll want to run our program:

# run the program on a QVM
qc = get_qc('9q-square-qvm')
result = qc.run_and_measure(p, trials=10)
print(result[0])
print(result[1])

Compare the two arrays of measurement results. The results will be correlated between the qubits and random from
shot to shot.

The qc is a simulated quantum computer. By specifying we want to .run_and_measure, we’ve told our QVM to
run the program specified above, collapse the state with a measurement, and return the results to us. trials refers
to the number of times we run the whole program.

The call to run_and_measure will make a request to the two servers we started up in the previous section: first,
to the quilc server instance to compile the Quil program into native Quil, and then to the qvm server instance to
simulate and return measurement results of the program 10 times. If you open up the terminal windows where your
servers are running, you should see output printed to the console regarding the requests you just made.

In the following sections, we’ll cover gates, program construction & execution, and go into detail about our Quantum
Virtual Machine, our QPUs, noise models and more. If you’ve used pyQuil before, continue on to our New in Forest 2
- Other. Once you’re set with that, jump to Programs and Gates to continue.

1.1. Installation and Getting Started 7
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1.2 New in Forest 2 - Running on the QVM

PyQuil is for constructing and running quantum programs on real quantum computers. With the release of pyQuil 2,
we have changed parts of the API (compared to pyQuil 1.x) to better reflect that focus.

1.2.1 Program construction is largely the same

To construct run-and-measure-style programs, there are no changes in program construction. When using explicit
MEASURE instructions or using parametric programs for massive speed increases, please read about the new quil
memory model.

Below, we build a program that constructs a Bell state.

[1]: from pyquil import Program
from pyquil.gates import *
program = Program(

H(0),
CNOT(0, 1),

)
print(program)

H 0
CNOT 0 1

1.2.2 Unphysical methods deprecated in QVMConnection

In pyQuil 1.x, you would use the QVMConnection to run quantum programs on a web-hosted quantum simulator
(the “Quantum Virtual Machine”). To run on a real quantum processor (QPU), you would switch all instances of
QVMConnection to QPUConnection. However, QVMConnection let you do many unphysical operations that
are unsupported on a real QPU. These methods are detailed below and have been deprecated in favor of a new API
that clearly delineats the physical from the unphysical.

Wavefunction

When simulating a quantum program, we can inspect its wavefunction. This is very useful! It is–however–impossible
to inspect the wavefunction of a real quantum processor. This is one of the central tenets of quantum information!
Attempting to switch instances of QVMConnection to QPUConnection results in an error. Additionally, using
QVMConnection with a noise model will cause the wavefunction call to behave badly.

The old way

[2]: from pyquil.api import QVMConnection
wfn_old = QVMConnection().wavefunction(program)
print(wfn_old)

(0.7071067812+0j)|00> + (0.7071067812+0j)|11>

8 Chapter 1. Contents
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The new way

WavefunctionSimulator encapsulates all functionality that requires peering into a wavefunction. This also
opens the door for different types of simulators other than those backed by a wavefunction. For example, you can
simulate a quantum circuit with a density matrix simulation or a path integral simulation.

[3]: from pyquil.api import WavefunctionSimulator
wfn = WavefunctionSimulator().wavefunction(program)
print(wfn)

(0.7071067812+0j)|00> + (0.7071067812+0j)|11>

Expectation

Many quantum algorithms involve calculating expectation values of quantum observables. We can represent quantum
observables with PauliSums. When using a simulator, it is possible to exactly calculate expectation values (a con-
sequence of having access to the full wavefunction) whereas when running on a QPU you must estimate expectation
values by sampling from many runs of a program.

Let’s use our program defined above to construct a bell state.

[4]: print(program)

H 0
CNOT 0 1

And we wish to measure the following quantum observables 𝑂 - the expected value of the 0th bit 𝑂 = (1 − 𝑍0)/2
- the expected value of the 1st bit 𝑂 = (1 − 𝑍1)/2 - the expected value of the exclusive or (XOR) between the two
qubits 𝑂 = (1 − 𝑍𝑍)/2

Exercise for the reader: convince yourself that (1 − 𝑍𝑍)/2 is the XOR function

[5]: from pyquil.paulis import sZ

z0 = (1-sZ(0))*0.5
z1 = (1-sZ(1))*0.5
xor = (1-sZ(0)*sZ(1))*0.5

A Bell state is entangled, so each of the 1-qubit operators should give an expectation value of 0.5 (as each qubit taken
individually has a 50% change of being measured in the 0 or 1 state) whereas the two-qubit operator should give an
expectation value of 0 (as the two qubits considered together will always have even parity)

The old way

Because of technical details, QVMConnection.expectation requires transforming your observable represented
as a PauliSum into a program, and then remembering to multiply back in the coefficients. A more usable API was
introduced in Pyquil 1.9 and was given the name pauli_expectation.

[6]: for observable in [z0, z1, xor]:
expectation = QVMConnection().pauli_expectation(prep_prog=program, pauli_

→˓terms=observable)
print(observable, '\t', expectation)

1.2. New in Forest 2 - Running on the QVM 9
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(0.5+0j)*I + (-0.5+0j)*Z0 (0.4999999999999999+0j)
(0.5+0j)*I + (-0.5+0j)*Z1 (0.4999999999999999+0j)
(0.5+0j)*I + (-0.5+0j)*Z0*Z1 0j

The new way

If you want analytical expectation values, the solution is to use WavefunctionSimulator.expectation

Note that the method is not named pauli_expectation as we do not support the pyQuil<1.9 way of using
Programs to represent PauliSums

[7]: for observable in [z0, z1, xor]:
expectation = WavefunctionSimulator().expectation(prep_prog=program, pauli_

→˓terms=observable)
print(observable, '\t', expectation)

(0.5+0j)*I + (-0.5+0j)*Z0 (0.4999999999999999+0j)
(0.5+0j)*I + (-0.5+0j)*Z1 (0.4999999999999999+0j)
(0.5+0j)*I + (-0.5+0j)*Z0*Z1 0j

Sampling expectations on a QPU.

Estimating expectation values via sampling from a QPU is often something we would like to do! Please look forward
for helper functions for sampling observables in the near future.

1.2.3 Async methods removed

pyQuil 2 is tailored for Rigetti’s Quantum Cloud Services (QCS). In prior releases, executing programs on either the
QVM or QPU involved communicating with a cloud-hosted endpoint. Now, you are empowered with

1. A pre-configured quantum machine image (QMI) with your own dedicated qvm and quilc instance.

2. low-latency QPU access all to yourself during a scheduled time window

3. A downloadable local version of the qvm and quilc

Taken together, there is no longer any motivation for supporting asynchronous access to either the QVM or QPU.

When running many programs it was often possible to reduce runtime by batching jobs and exploiting the async queue.
The following example does not work in pyQuil 2 but gives a sketch about how this would have worked.

import numpy as np
cxn = QVMConnection()
thetas = np.linspace(0, 2*np.pi, 20)
jobs = [Program(RY(theta, 0)) for theta in thetas]
job_ids = [cxn.run_and_measure_async(job, qubits=[0], trials=1000) for job in jobs]
bitstrings = [np.asarray(cxn.wait_for_job(job)) for job in jobs]

Since this is such an important use case, there have been many changes to support running many programs as quickly
as possible. We demonstrate an equivalent, synchronous version of the example given above. To idiomatically run
this set of jobs, there are additional features you should use that are not covered in this document. Please
continue reading the documentation, especially the page covering parametric programs.
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[8]: import numpy as np
cxn = QVMConnection()
thetas = np.linspace(0, np.pi, 20)
bitstrings = [np.asarray(cxn.run_and_measure(Program(RY(theta, 0)), qubits=[0],
→˓trials=1000))

for theta in thetas]

[9]: %matplotlib inline
from matplotlib import pyplot as plt

averages = [np.mean(bs[:,0]) for bs in bitstrings]
_ = plt.plot(thetas, averages, 'o-')

1.3 New in Forest 2 - QuantumComputer

PyQuil is for constructing and running quantum programs on real quantum computers. With the release of pyQuil 2,
we have changed parts of the API to better reflect that focus. Instead of swapping between a QVMConnection and a
QPUConnection, you will primarily deal with a QuantumComputer with consistent API and behavior regardless
of

• QVM / QPU

• Presence of noise model

• Device topology

1.3.1 Running a program

Let’s show how you can run a simple program on a QuantumComputer first we start with the relevant imports.

[1]: from pyquil import Program
from pyquil.gates import *

We’ll write a function that takes a list of qubits and returns a pyQuil Program that constructs an entangled “GHZ”
state. This is a generalization of the two-qubit Bell state.

1.3. New in Forest 2 - QuantumComputer 11
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[2]: def ghz_state(qubits):
"""Create a GHZ state on the given list of qubits by applying
a Hadamard gate to the first qubit followed by a chain of CNOTs
"""
program = Program()
program += H(qubits[0])
for q1, q2 in zip(qubits, qubits[1:]):

program += CNOT(q1, q2)
return program

For example, creating a GHZ state on qubits 1, 2, and 3 would look like:

[3]: program = ghz_state(qubits=[0, 1, 2])
print(program)

H 0
CNOT 0 1
CNOT 1 2

1.3.2 Debugging with WavefunctionSimulator

We can check that this program gives us the desired wavefunction by using WavefunctionSimulator.wavefunction()

[4]: from pyquil.api import WavefunctionSimulator
wfn = WavefunctionSimulator().wavefunction(program)
print(wfn)

(0.7071067812+0j)|000> + (0.7071067812+0j)|111>

We can’t get the wavefunction from a real quantum computer though, so instead we’ll sample bitstrings. We expect
to always measure the bitstring 000 or the bitstring 111 based on the definition of a GHZ state and confirmed by our
wavefunction simulation.

1.3.3 get_qc

We’ll construct a QuantumComputer via the helper method get_qc. You may be tempted to use the
QuantumComputer constructor directly. Please refer to the advanced documentation to see how to do that. Our
program uses 3 qubits, so we’ll ask for a 3-qubit QVM.

[5]: from pyquil import get_qc
qc = get_qc('3q-qvm')
qc

[5]: QuantumComputer[name="3q-qvm"]

We can do a quick check to make sure it has 3 qubits

[6]: qc.qubits()

[6]: [0, 1, 2]

12 Chapter 1. Contents

apidocs/autogen/pyquil.api.WavefunctionSimulator.wavefunction.html#pyquil.api.WavefunctionSimulator.wavefunction
apidocs/quantum_computer.html#pyquil.get_qc


pyQuil Documentation, Release 2.6.0

1.3.4 Sampling with run_and_measure

QuantumComputer.run_and_measure will run a given program (that does not have explicit MEASURE in-
structions) and then measure all qubits present in the quantum computer.

[7]: bitstrings = qc.run_and_measure(program, trials=10)
bitstrings

[7]: {0: array([1, 0, 0, 1, 1, 1, 1, 0, 1, 0]),
1: array([1, 0, 0, 1, 1, 1, 1, 0, 1, 0]),
2: array([1, 0, 0, 1, 1, 1, 1, 0, 1, 0])}

Let’s programatically verify that we always measure 000 or 111 by “summing” each bitstring and checking if it’s
eather 0 (for 000) or 3 (for 111)

[8]: import numpy as np
bitstring_array = np.vstack(bitstrings[q] for q in qc.qubits()).T
sums = np.sum(bitstring_array, axis=1)
sums

[8]: array([3, 0, 0, 3, 3, 3, 3, 0, 3, 0])

[9]: sample_is_ghz = np.logical_or(sums == 0, sums == 3)
sample_is_ghz

[9]: array([ True, True, True, True, True, True, True, True, True,
True])

[10]: np.all(sample_is_ghz)

[10]: True

1.3.5 Change alert: run_and_measure will return a dictionary of 1d bitstrings.

Not a 2d array. To demonstrate why, consider a lattice whose qubits are not contiguously indexed from 0.

[11]: # TODO: we need a lattice that is not zero-indexed
# qc = get_qc('Aspen-0-3Q-B')
# qc.run_and_measure(ghz_state(qubits=[1,2,3]))

1.3.6 Change alert: All qubits are measured

PyQuil 1.x’s run_and_measure would only measure qubits used in the given program. Now all qubits (per qc.
qubits()) are measured. This is easier to reason about and reflects the reality of running on a QPU. When account-
ing for noise or when running QCVV tasks, you may be interested in the measurement results of qubits that weren’t
even used in your program!

[12]: qc = get_qc('4q-qvm')
bitstrings = qc.run_and_measure(Program(X(0), X(1), X(2)), trials=10)
bitstrings

[12]: {0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
1: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
2: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
3: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])}
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You can drop qubits you’re not interested in by indexing into the returned dictionary

[13]: # Stacking everything
np.vstack(bitstrings[q] for q in qc.qubits()).T

[13]: array([[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0]])

[14]: # Stacking what you want (contrast with above)
qubits = [0, 1, 2]
np.vstack(bitstrings[q] for q in qubits).T

[14]: array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])

1.3.7 Change alert: run_and_measure works with noise models now.

In pyQuil 1.x, run_and_measure would not work with noise models. Now noise models are supported. Pre-
configured noise models can be used via get_qc('xxxx-noisy-qvm').

As a consequence, run_and_measure for large numbers of trials will be slower in Pyquil 2.

[15]: qc = get_qc('3q-noisy-qvm')
bitstrings = qc.run_and_measure(program, trials=10)
bitstrings

[15]: {0: array([0, 1, 1, 0, 0, 1, 1, 0, 1, 1]),
1: array([0, 1, 1, 0, 0, 1, 1, 0, 1, 1]),
2: array([0, 1, 1, 0, 0, 1, 1, 0, 1, 1])}

[16]: bitstring_array = np.vstack(bitstrings[q] for q in qc.qubits()).T
sums = np.sum(bitstring_array, axis=1)
sums

[16]: array([0, 3, 3, 0, 0, 3, 3, 0, 3, 3])

[17]: # Noise means now we measure things other than 000 or 111
np.all(np.logical_or(sums == 0, sums == 3))

[17]: True
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1.3.8 list_quantum_computers

You can find all possible arguments to get_qc with list_quantum_computers

[18]: from pyquil import list_quantum_computers
# TODO: unauthenticated endpoint
# list_quantum_computers()

1.3.9 QuantumComputers have a topology

An important restriction when running on a real quantum computer is the mapping of qubits to the supported
two-qubit gates. The QVM is designed to provide increasing levels of “realism” to guarantee that if your
program executes successfully on get_qc("Aspen-xxx-noisy-qvm") then it will execute successfully on
get_qc("Aspen-xxx")*

* guarantee not currently guaranteed. This is a work in progress.

1.3.10 Inspecting the topology

You can access a topology by qc.qubit_topology(), which will return a NetworkX representation of qubit
connectivity. You can access the full set of supported instructions by qc.get_isa(). For example, we include a
generic QVM named "9q-square-qvm" that has a square topology.

[19]: qc = get_qc('9q-square-qvm')
%matplotlib inline
import networkx as nx
nx.draw(qc.qubit_topology())
from matplotlib import pyplot as plt
_ = plt.title('9q-square-qvm', fontsize=18)
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1.3.11 What If I don’t want a topology?

WavefunctionSimulator still has no notion of qubit connectivity, so feel free to use that for simulating quantum
algorithms that you aren’t concerned about running on an actual QPU.

Above we used get_qc("3q-qvm"), "4q-qvm", and indeed you can do any "{n}q-qvm" (subject to compu-
tational resource constraints). These QVM’s are constructed with a topology! It just happens to be fully connected

[20]: nx.draw(get_qc('5q-qvm').qubit_topology())
_ = plt.title('5q-qvm is fully connected', fontsize=16)

1.3.12 Heirarchy of realism

• WavefunctionSimulator to debug algorithm

• get_qc("5q-qvm") to debug sampling

• get_qc("9q-square-qvm") to debug mapping to a lattice

• get_qc("9q-square-noisy-qvm") to debug generic noise characteristics

• get_qc("Aspen-0-16Q-A-qvm") to debug mapping to a real lattice

• get_qc("Aspen-0-16Q-A-noisy-qvm") to debug noise characteristics of a real device

• get_qc("Aspen-0-16Q-A") to run on a real device

1.3.13 “What is a QuantumComputer?” Advanced Edition

A QuantumComputer is a wrapper around three constituent parts, each of which has a programatic interface that
must be respected by all classes that implement the interface. By having clear interfaces we can write backend-agnostic
methods on QuantumComputer and mix-and-match backing objects.
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The following diagram shows the three objects that must be provided when constructing a QuantumComputer “by
hand”. The abstract classes are backed in grey with example implementing classes listed below. Please consult the api
reference for details on each interface.

As an example, let’s construct a 5-qubit QVM with one central node and only even numbered qubits.

[21]: topology = nx.from_edgelist([
(10, 2),
(10, 4),
(10, 6),
(10, 8),

])
from pyquil.device import NxDevice
device = NxDevice(topology)

from pyquil.api._qac import AbstractCompiler
class MyLazyCompiler(AbstractCompiler):

def quil_to_native_quil(self, program):
return program

def native_quil_to_executable(self, nq_program):
return nq_program

from pyquil.api import QuantumComputer, QVM, ForestConnection

(continues on next page)
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(continued from previous page)

my_qc = QuantumComputer(
name='my-qvm',
qam=QVM(connection=ForestConnection()),
device=device,
compiler=MyLazyCompiler(),

)

nx.draw(my_qc.qubit_topology())

[22]: my_qc.run_and_measure(Program(X(10)), trials=5)

[22]: {2: array([0, 0, 0, 0, 0]),
4: array([0, 0, 0, 0, 0]),
6: array([0, 0, 0, 0, 0]),
8: array([0, 0, 0, 0, 0]),
10: array([1, 1, 1, 1, 1])}

1.4 New in Forest 2 - Parametric Programs

pyQuil is for constructing and running hybrid quantum/classical algorithms on real quantum computers. With the
release of pyQuil 2, we have changed parts of the API to take advantage of some exciting new features available on
QCS.

A hybrid algorithm involves using the quantum computer to create a quantum state that would be difficult to prepare
classically; measure it in a way particular to your problem; and then update your procedure for creating the state so
that the measurements are closer to the correct answer. A real hybrid algorithm involves structured ansatze like QAOA
for optimization or a UCC ansatz for chemistry. Here, we’ll do a much simpler parameterized program

[1]: from pyquil import Program, get_qc
from pyquil.gates import *

def ansatz(theta):
(continues on next page)
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(continued from previous page)

program = Program()
program += RY(theta, 0)
return program

print(ansatz(theta=0.2))

RY(0.2) 0

1.4.1 Scan over the parameter (the old way)

For this extrordinarily simple ansatz, we can discretize the parameter theta and try all possible values. As the number
of parameters increases, the number of combinations increases exponentially so doing a full grid search will become
intractable for anything more than ~two parameters.

[2]: import numpy as np
qc = get_qc("9q-square-qvm")

thetas = np.linspace(0, 2*np.pi, 21)
results = []
for theta in thetas:

program = ansatz(theta)
bitstrings = qc.run_and_measure(program, trials=1000)
results.append(np.mean(bitstrings[0]))

[3]: %matplotlib inline
from matplotlib import pyplot as plt

plt.plot(thetas, results, 'o-')
plt.xlabel(r'$\theta$', fontsize=18)
_ = plt.ylabel(r'$\langle \Psi(\theta) | \frac{1 - Z}{2} | \Psi(\theta) \rangle$',

fontsize=18)
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1.4.2 Do an optimization (the old way)

Instead of doing a full grid search, we will employ a classical optimizer to find the best parameter values. Here we use
scipy to find the theta that results in sampling the most 1s in our resultant bitstrings.

[4]: def objective_function(theta):
program = ansatz(theta[0])
bitstrings = qc.run_and_measure(program, trials=1000)
result = np.mean(bitstrings[0])
return -result

import scipy.optimize
res = scipy.optimize.minimize(objective_function, x0=[0.1], method='COBYLA')
res

[4]: fun: -1.0
maxcv: 0.0

message: 'Optimization terminated successfully.'
nfev: 13

status: 1
success: True

x: array([3.1])

[5]: plt.plot(thetas, results, label='scan')
plt.plot([res.x], [-res.fun], '*', ms=20, label='optimization result')
plt.legend()

[5]: <matplotlib.legend.Legend at 0x1015dedf28>

1.4.3 Compilation

Prior to QCS, a QPU job would be routed via a series of cloud-based queues and compilation steps. With Forest 2, you
are in control of the two stages of compilation so you can amortize the cost of compiling. Your QMI and all classical
infrastructure is hosted on the Rigetti premises, so network latency is minimal.
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Quil to native quil

The first step of compilation converts gates to their hardware-supported equivalent. For example, our parametric RY
is converted into RX’s and RZ’s because these are physically realizable on a Rigetti QPU

[6]: nq_program = qc.compiler.quil_to_native_quil(ansatz(theta=0.5))
print(nq_program)

PRAGMA EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7 8)"
RX(pi/2) 0
RZ(0.5) 0
RX(-pi/2) 0
PRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6 7 8)"
PRAGMA EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7 8)"
PRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6 7 8)"

Native quil to executable

The second step of compilation will turn named gates into calibrated pulses stored in a binary format suitable for
consumption by the control electronics. This means that you can fully compile a given program and run it many times
with minimal classical overhead.

Note: since we’re using a QVM, for which there is no binary format, this stage is mocked out and you can see the
original Quil inside the PyQuilExecutableResponse that is returned. When running on the QPU, this will
return a BinaryExecutableResponse whose contents are opaque.

TODO: obscure the contents of PyQuilExecutableResponse: https://github.com/rigetti/pyquil/issues/700

[7]: qc.compiler.native_quil_to_executable(nq_program)

[7]: PyQuilExecutableResponse(attributes={'native_quil_metadata': {'final-rewiring': [0, 1,
→˓ 2, 3, 4, 5, 6, 7, 8], 'topological_swaps': 0, 'gate_depth': 3, 'gate_volume': 3,
→˓'program_duration': 18.01, 'program_fidelity': 1.0, 'multiqubit_gate_depth': 0},
→˓'num_shots': 1}, program='PRAGMA EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7 8)"\nRX(pi/2)
→˓0\nRZ(0.5) 0\nRX(-pi/2) 0\nPRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6 7 8)"\nPRAGMA
→˓EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7 8)"\nPRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6
→˓7 8)"\n')

1.4.4 Parametric compilation

This doesn’t buy us much if we have to know exactly what circuit we want to run before compiling it and amortizing the
compilation cost. Maybe you could get away with it when you’re doing a parameter scan, but for hybrid algorithms, the
circuit parameter (here: theta) depends on the results of a circuit before. This is the essence of hybrid programming!
Therefore, all compilation steps have been upgraded to support named, symbolic parameters that will be updated at
runtime with minimal overhead.

With this feature, you can compile a parametric program once and run it many times will different parameter values
and you need not know the parameter values at compilation time.

There are a couple of prerequisites to use this feature effectively from PyQuil, which we address in this document.

First, you must declare a parameter when constructing your quil program. When declaring a named classical variable,
you must specify at least a name and a type. It is conventional to make sure the Python variable name of the reference
memory matches the Quil variable name. In our case, we name both things theta. Our circuit above would be
modified in this way:
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[8]: program = Program()
theta = program.declare('theta', memory_type='REAL')
program += RY(theta, 0)
print(program)

DECLARE theta REAL[1]
RY(theta) 0

1.4.5 Measuring

In the documentation so far, we’ve been using the run_and_measure functionality of QuantumComputer. It’s
time to get our hands dirty and introduce explicit measure instructions.

Above, we declared a classical piece of memory, we’ve given it a name (theta), and we’ve given it a type (REAL).
The bits that we measure (or “read out” – ro for short) must now also be declared, given a name, and a type. Addi-
tionally, we’ll usually be measuring more than one qubit so we can give this register a size.

The index of the readout register need not match the qubit index. For example below, we create a bell state on qubits
5 and 6 and measure the readout results into ro[0] and ro[1].

Note: The readout register must be named “ro” (for now)

[9]: program = Program()
ro = program.declare('ro', memory_type='BIT', memory_size=2)
program += H(5)
program += CNOT(5, 6)
program += MEASURE(5, ro[0])
program += MEASURE(6, ro[1])
print(program)

DECLARE ro BIT[2]
H 5
CNOT 5 6
MEASURE 5 ro[0]
MEASURE 6 ro[1]

Our very simple ansatz only has one qubit, so the measurement is quite simple.

[10]: program = Program()
theta = program.declare('theta', memory_type='REAL')
ro = program.declare('ro', memory_type='BIT', memory_size=1)
program += RY(theta, 0)
program += MEASURE(0, ro[0])
print(program)

DECLARE theta REAL[1]
DECLARE ro BIT[1]
RY(theta) 0
MEASURE 0 ro[0]

1.4.6 Number of shots

The number of trials is compiled into the executable binary, so we must specify this number prior to compilation.
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TODO: add to str / repr https://github.com/rigetti/pyquil/issues/701

[11]: program = Program()
theta = program.declare('theta', memory_type='REAL')
ro = program.declare('ro', memory_type='BIT', memory_size=1)
program += RY(theta, 0)
program += MEASURE(0, ro[0])
program.wrap_in_numshots_loop(shots=1000)
print(program)

DECLARE theta REAL[1]
DECLARE ro BIT[1]
RY(theta) 0
MEASURE 0 ro[0]

1.4.7 Using qc.run()

To use the lower-level but more powerful qc.run interface, we have had to take control of these three things

1. We decalred a read-out register named ro of type BIT and included explicit MEASURE instructions. Since this
sets up a (potentially sprase) mapping from qubits to classical addresses, we can expect qc.run() to return
the classic 2d ndarray of yore instead of the dictionary returned by run_and_measure

2. We have called program.wrap_in_numshots_loop() prior to compilation so the number of shots can
be encoded in an efficient binary representation of the program

3. We have taken control of compilation; either by calling qc.compile(program) or by using the lower-level
functions: nq_program = qc.compiler.quil_to_native_quil(program) executable =
qc.compiler.native_quil_to_executable(nq_program)

[12]: def ansatz(theta):
program = Program()
ro = program.declare('ro', memory_type='BIT', memory_size=1)
program += RY(theta, 0)
program += MEASURE(0, ro[0])
return program

print(ansatz(theta=np.pi))

DECLARE ro BIT[1]
RY(pi) 0
MEASURE 0 ro[0]

We can run the program with a pre-set angle (here, theta = np.pi).

[13]: program = ansatz(theta=np.pi)
program.wrap_in_numshots_loop(shots=5)
executable = qc.compile(program)
bitstrings = qc.run(executable)
print(bitstrings.shape)
bitstrings

(5, 1)

[13]: array([[1],
[1],
[1],

(continues on next page)
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(continued from previous page)

[1],
[1]])

1.4.8 Scan over the parameter (the new way)

Finally, all the pieces are in place to compile and run parameterized executable binaries. We declare parameters that
will be compiled symbolically into the binary allowing us to amortize the cost of compilation when running hybrid
algorithms.

[14]: def ansatz():
program = Program()
theta = program.declare('theta', memory_type='REAL')
ro = program.declare('ro', memory_type='BIT', memory_size=1)
program += RY(theta, 0)
program += MEASURE(0, ro[0])
return program

print(ansatz())

DECLARE theta REAL[1]
DECLARE ro BIT[1]
RY(theta) 0
MEASURE 0 ro[0]

1.4.9 Using memory_map

Now, when we call qc.run we provide a memory_map argument which will substitute in values for previously-
declared Quil variables in a pre-compiled executable.

[15]: program = ansatz() # look ma, no arguments!
program.wrap_in_numshots_loop(shots=1000)
executable = qc.compile(program)

thetas = np.linspace(0, 2*np.pi, 21)
results = []
for theta in thetas:

bitstrings = qc.run(executable, memory_map={'theta': [theta]})
results.append(np.mean(bitstrings[:, 0]))

%matplotlib inline
from matplotlib import pyplot as plt

plt.plot(thetas, results, 'o-')
plt.xlabel(r'$\theta$', fontsize=18)
_ = plt.ylabel(r'$\langle \Psi(\theta) | \frac{1 - Z}{2} | \Psi(\theta) \rangle$',
→˓fontsize=18)
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1.4.10 Do an optimization (the new way)

Since parameters are compiled symbolically, we can do hybrid algorithms just as fast as parameter scans.

[16]: program = ansatz() # look ma, no arguments!
program.wrap_in_numshots_loop(shots=1000)
executable = qc.compile(program)

def objective_function(thetas):
bitstrings = qc.run(executable, memory_map={'theta': thetas})
result = np.mean(bitstrings[:, 0])
return -result

res = scipy.optimize.minimize(objective_function, x0=[0.1], method='COBYLA')
res

[16]: fun: -1.0
maxcv: 0.0

message: 'Optimization terminated successfully.'
nfev: 12

status: 1
success: True

x: array([3.1])

[17]: plt.plot(thetas, results, label='scan')
plt.plot([res.x], [-res.fun], '*', ms=20, label='optimization result')
plt.legend()

[17]: <matplotlib.legend.Legend at 0x1015f13898>
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1.5 New in Forest 2 - Other

There are many other changes to the Forest SDK (comprising pyQuil, Quil, the Quil Compiler, and the QVM).

Note: For installation & setup, follow the download instructions in the section Installation and Getting Started at the
top of the page.

1.5.1 Updates to the Quil language

The primary differences in the programming language Quil 1.0 (as appearing in pyQuil 1.x) and Quil 2 (as appearing
in pyQuil 2) amount to an enhanced memory model. Whereas the classical memory model in Quil 1.0 amounted to an
flat bit array of indefinite size, the memory model in Quil 2 is segmented into typed, sized, named regions.

In terms of compatibility with Quil 1.0, this primarily changes how MEASURE instructions are formulated, since their
classical address targets must be modified to fit the new framework. In terms of new functionality, this allows angle
values to be read in from classical memory.

Quil 2 also introduces easier ways to manipulate gates by using gate modifiers. Two gate modifiers are supported
currently, DAGGER and CONTROLLED.

DAGGER can be written before a gate to refer to its inverse. For instance:

DAGGER RX(pi/3) 0

would have the same effect as:

RX(-pi/3) 0

DAGGER can be applied to any gate, but also circuits defined with DEFCIRCUIT. This allows for easy reversal of
unitary circuits:

DEFCIRCUIT BELL:
H 0
CNOT 0 1

(continues on next page)
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(continued from previous page)

# construct a Bell state
BELL
# disentangle, bringing us back to identity
DAGGER BELL

Classical memory regions must be explicitly requested and named by a Quil program using DECLARE directive. A
generic DECLARE directive has the following syntax:

DECLARE region-name type([count])? (SHARING parent-region-name (OFFSET
(offset-count offset-type)+))?

The non-keyword items have the following allowable values:

• region-name: any non-keyword formal name.

• type: one of REAL, BIT, OCTET, or INTEGER

• parent-region-name: any non-keyword formal name previously used as region-name in a different
DECLARE statement.

• offset-count: a nonnegative integer.

• offset-type: the same allowable values as type.

Here are some examples:

DECLARE beta REAL[32]
DECLARE ro BIT[128]
DECLARE beta-bits BIT[1436] SHARING beta
DECLARE fourth-bit-in-beta1 BIT SHARING beta OFFSET 1 REAL 4 BIT

In order, the intention of these DECLARE statements is:

• Allocate an array called beta of length 32, each entry of which is a REAL number.

• Allocate an array called ro of length 128, each entry of which is a BIT.

• Name an array called beta-bits, which is an overlay onto the existing array beta, so that the bit represen-
tations of elements of beta can be directly examined and manipulated.

• Name a single BIT called fourth-bit-in-beta1 which overlays the fourth bit of the bit representation of
the REAL value beta[1].

1.5.2 Backwards compatibility

Quil 1.0 is not compatible with Quil 2 in the following ways:

• The unnamed memory references [n] and [n-m] have no direct equivalent in Quil 2 and must be replaced by
named memory references. (This primarily affects MEASURE instructions.)

• The classical memory manipulation instructions have been modified: the operands of AND have been reversed
(so that in Quil 2, the left operand is the target address) and OR has been replaced by IOR and its operands
reversed (so that, again, in Quil 2 the left operand is the target address).

In all other instances, Quil 1.0 will operate identically with Quil 2.

When confronted with program text conforming to Quil 1.0, pyQuil 2 will automatically rewrite MEASURE q [n]
to MEASURE q ro[n] and insert a DECLARE statement which allocates a BIT-array of the appropriate size named
ro.
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1.5.3 Updates to Forest

• In Forest 1.3, job submission to the QPU was done from your workstation and the ability was gated by on user
ID. In Forest 2, job submission to the QPU must be done from your remote virtual machine, called a QMI
(Quantum Machine Image).

• In Forest 1.3, user data persisted indefinitely in cloud storage and could be accessed using the assigned job ID.
In Forest 2, user data is stored only transiently, and it is the user’s responsibility to handle long-term data storage
on their QMI.

• Forest 1.3 refered to the software developer kit (pyQuil, QVM, Quilc) and the cloud platform for submitting
jobs. Forest 2 is the SDK which you can install on your own computer or use pre-installed on a QMI. The entire
platform is called Quantum Cloud Services (QCS).

Example: Computing the bond energy of molecular hydrogen, pyQuil 1.9 vs 2.0

By way of example, let’s consider the following pyQuil 1.9 program, which computes the natural bond distance in
molecular hydrogen using a VQE-type algorithm:

from pyquil.api import QVMConnection
from pyquil.quil import Program

def setup_forest_objects():
qvm = QVMConnection()
return qvm

def build_wf_ansatz_prep(theta):
program = Program(f"""

# set up initial state
X 0
X 1

# build the exponentiated operator
RX(pi/2) 0
H 1
H 2
H 3

CNOT 0 1
CNOT 1 2
CNOT 2 3
RZ({theta}) 3
CNOT 2 3
CNOT 1 2
CNOT 0 1

RX(-pi/2) 0
H 1
H 2
H 3

# measure out the results
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]

(continues on next page)
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(continued from previous page)

MEASURE 3 [3]""")
return program

# some constants
bond_step, bond_min, bond_max = 0.05, 0, 200
angle_step, angle_min, angle_max = 0.1, 0, 63
convolution_coefficients = [0.1698845197777728, 0.16988451977777283, -0.
→˓2188630663199042,

-0.2188630663199042]
shots = 1000

# set up the Forest object
qvm = setup_forest_objects()

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

# set up the Program object, each time we have a new parameter
program = build_wf_ansatz_prep(angle_min + offset * angle_step)
bitstrings = qvm.run(program, indices, trials=shots)

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

# compute minimum energy as a function of bond length
min_energies = list(range(bond_min, bond_max))
for bond_length in min_energies:

energies = []
for offset in range(angle_min, angle_max):

energy = 0
for j in range(4):

energy += occupations[offset][j] * convolution_coefficients[j]
energies.append(energy)

min_energies[bond_length] = min(energies)

min_index = min_energies.index(min(min_energies))
min_energy, relaxed_length = min_energies[min_index], min_index * bond_step

In order to port this code to pyQuil 2.0, we need change only one thing: the part referencing QVMConnection should
be replaced by an equivalent part referencing a QuantumComputer connected to a QVM. Specifically, the following
snippet

from pyquil.api import QVMConnection

def setup_forest_objects():
qvm = QVMConnection()
return qvm

can be changed to
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from pyquil.api import get_qc

def setup_forest_objects():
qc = get_qc("9q-square-qvm")
return qc

and the references to qvm in the main body are changed to qc instead. Since the QuantumComputer object
also exposes a run routine and pyQuil itself automatically rewrites 1.9-style MEASURE instructions into 2.0-style
instructions, this is all we need to do.

If we are willing to be more intrusive, we can also take advantage of pyQuil 2.0’s classical memory and parametric
programs. The first piece to change is the Quil program itself: we remove the argument theta from the Python
function build_wf_ansatz_prep, with the intention of letting the QPU fill it in later. In turn, we modify the
Quil program itself to have a REAL memory parameter named theta. We also declare a few BITs for our MEASURE
instructions to target.

def build_wf_ansatz_prep():
program = Program("""

# set up memory
DECLARE ro BIT[4]
DECLARE theta REAL

# set up initial state
X 0
X 1

# build the exponentiated operator
RX(pi/2) 0
H 1
H 2
H 3

CNOT 0 1
CNOT 1 2
CNOT 2 3
RZ(theta) 3
CNOT 2 3
CNOT 1 2
CNOT 0 1

RX(-pi/2) 0
H 1
H 2
H 3

# measure out the results
MEASURE 0 ro[0]
MEASURE 1 ro[1]
MEASURE 2 ro[2]
MEASURE 3 ro[3]""")

return program

Next, we modify the execution loop. Rather than reformulating the Program object each time, we build and compile
it once, then use the .load() method to transfer the parametric program to the (simulated) quantum device. We then
set only the angle value within the inner loop, and we change to using .run() and .wait() methods to manage
control between us and the quantum device.

More specifically, the old execution loop

30 Chapter 1. Contents



pyQuil Documentation, Release 2.6.0

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

# set up the Program object, each time we have a new parameter
program = build_wf_ansatz_prep(angle_min + offset * angle_step)
bitstrings = qvm.run(program, indices, trials=shots)

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

becomes

# set up the Program object, ONLY ONCE
program = build_wf_ansatz_prep().wrap_in_numshots_loop(shots=shots)
binary = qc.compile(program)

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

bitstrings = qc.run(binary, {'theta': [angle_min + offset * angle_step]})

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

Overall, the resulting program looks like this:

from pyquil.api import get_qc
from pyquil.quil import Program

def setup_forest_objects():
qc = get_qc("9q-square-qvm")
return qc

def build_wf_ansatz_prep():
program = Program("""

# set up memory
DECLARE ro BIT[4]
DECLARE theta REAL

# set up initial state
X 0
X 1

# build the exponentiated operator
RX(pi/2) 0
H 1
H 2

(continues on next page)
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H 3

CNOT 0 1
CNOT 1 2
CNOT 2 3
RZ(theta) 3
CNOT 2 3
CNOT 1 2
CNOT 0 1

RX(-pi/2) 0
H 1
H 2
H 3

# measure out the results
MEASURE 0 ro[0]
MEASURE 1 ro[1]
MEASURE 2 ro[2]
MEASURE 3 ro[3]""")

return program

# some constants
bond_step, bond_min, bond_max = 0.05, 0, 200
angle_step, angle_min, angle_max = 0.1, 0, 63
convolution_coefficients = [0.1698845197777728, 0.16988451977777283, -0.
→˓2188630663199042,

-0.2188630663199042]
shots = 1000

# set up the Forest object
qc = setup_forest_objects()

# set up the Program object, ONLY ONCE
program = build_wf_ansatz_prep().wrap_in_numshots_loop(shots=shots)
binary = qc.compile(program)

# get all the unweighted expectations for all the sample wavefunctions
occupations = list(range(angle_min, angle_max))
indices = list(range(4))
for offset in occupations:

bitstrings = qc.run(binary, {'theta': [angle_min + offset * angle_step]})

totals = [0, 0, 0, 0]
for bitstring in bitstrings:

for index in indices:
totals[index] += bitstring[index]

occupations[offset] = [t / shots for t in totals]

# compute minimum energy as a function of bond length
min_energies = list(range(bond_min, bond_max))
for bond_length in min_energies:

energies = []
for offset in range(angle_min, angle_max):

energy = 0
for j in range(4):

(continues on next page)
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energy += occupations[offset][j] * convolution_coefficients[j]
energies.append(energy)

min_energies[bond_length] = min(energies)

min_index = min_energies.index(min(min_energies))
min_energy, relaxed_length = min_energies[min_index], min_index * bond_step

1.5.4 Miscellanea

Quil promises that a BIT is 1 bit and that an OCTET is 8 bits. Quil does not promise, however, the size or layout of
INTEGER or REAL. These are implementation-dependent.

On the QPU, INTEGER refers to an unsigned integer stored in a 48-bit wide little-endian word, and REAL refers to a
48-bit wide little-endian fixed point number of type <0.48>. In general, these datatypes are implementation-dependent.
OCTET always refers to an 8-bit wide unsigned integer and is independent of implementation.

Memory regions are all “global”: DECLARE directives cannot appear in the body of a DEFCIRCUIT.

On the QVM, INTEGER is a two’s complement signed 64-bit integer. REAL is an IEEE-754 double-precision floating-
point number.

1.5.5 Error reporting

Because the Forest 2.0 execution model is no longer asynchronous, our error reporting model has also changed. Rather
than writing to technical support with a job ID, users will need to provide all pertinent details to how they produced
an error.

PyQuil 2 makes this task easy with the function decorator @pyquil_protect, found in the module pyquil.api.
By decorating a failing function (or a function that has the potential to fail), any unhandled exceptions will cause an
error log to be written to disk (at a user-specifiable location). For example, the nonsense code block

from pyquil.api import pyquil_protect

...

@pyquil_protect
def my_function():

...
qc.qam.load(qc)
...

my_function()

causes the following error to be printed:

>>> PYQUIL_PROTECT <<<
An uncaught exception was raised in a function wrapped in pyquil_protect. We are
→˓writing out a
log file to "/Users/your_name/Documents/pyquil/pyquil_error.log".

Along with a description of what you were doing when the error occurred, send this
→˓file to Rigetti Computing
support by email at support@rigetti.com for assistance.
>>> PYQUIL_PROTECT <<<
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as well as the following log file to be written to disk at the indicated location:

{
"stack_trace": [
{

"name": "pyquil_protect_wrapper",
"filename": "/Users/your_name/Documents/pyquil/pyquil/error_reporting.py",
"line_number": 197,
"locals": {

"e": "TypeError('quil_binary argument must be a QVMExecutableResponse. This
→˓error is typically triggered by

forgetting to pass (nativized) Quil to native_quil_to_executable or by
→˓using a compiler meant to be used

for jobs bound for a QPU.',)",
"old_filename": "'pyquil_error.log'",
"kwargs": "{}",
"args": "()",
"log_filename": "'pyquil_error.log'",
"func": "<function my_function at 0x106dc4510>"

}
},
{

"name": "my_function",
"filename": "<stdin>",
"line_number": 10,
"locals": {

"offset": "0",
"occupations": "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

→˓ 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

→˓43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]"

}
},
{

"name": "wrapper",
"filename": "/Users/your_name/Documents/pyquil/pyquil/error_reporting.py",
"line_number": 228,
"locals": {

"pre_entry": "CallLogValue(timestamp_in=datetime.datetime(2018, 9, 11, 18, 40,
→˓ 19, 65538),

timestamp_out=None, return_value=None)",
"key": "run('<pyquil.api._qvm.QVM object at 0x1027e3940>', )",
"kwargs": "{}",
"args": "(<pyquil.api._qvm.QVM object at 0x1027e3940>,)",
"func": "<function QVM.run at 0x106db4e18>"

}
},
{

"name": "run",
"filename": "/Users/your_name/Documents/pyquil/pyquil/api/_qvm.py",
"line_number": 376,
"locals": {

"self": "<pyquil.api._qvm.QVM object at 0x1027e3940>",
"__class__": "<class 'pyquil.api._qvm.QVM'>"

}
}

],

(continues on next page)
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"timestamp": "2018-09-11T18:40:19.253286",
"call_log": {
"__init__('<pyquil.api._qvm.QVM object at 0x1027e3940>', '<pyquil.api._base_

→˓connection.ForestConnection object at
0x1027e3588>', )": {

"timestamp_in": "2018-09-11T18:40:18.967750",
"timestamp_out": "2018-09-11T18:40:18.968170",
"return_value": "None"

},
"run('<pyquil.api._qvm.QVM object at 0x1027e3940>', )": {

"timestamp_in": "2018-09-11T18:40:19.065538",
"timestamp_out": null,
"return_value": null

}
},
"exception": "TypeError('quil_binary argument must be a QVMExecutableResponse. This

→˓error is typically triggered
by forgetting to pass (nativized) Quil to native_quil_to_executable or by using a

→˓compiler meant to be used for
jobs bound for a QPU.',)",

"system_info": {
"python_version": "3.6.3 (default, Jan 25 2018, 13:55:02) \n[GCC 4.2.1 Compatible

→˓Apple LLVM 9.0.0
(clang-900.0.39.2)]",

"pyquil_version": "2.0.0-internal.1"
}

}

Please attach such a logfile to any request for support.

1.5.6 Parametric Programs

In PyQuil 1.x, there was an object named ParametricProgram:

# This function returns a quantum circuit with different rotation angles on a gate on
→˓qubit 0
def rotator(angle):

return Program(RX(angle, 0))

from pyquil.parametric import ParametricProgram
par_p = ParametricProgram(rotator) # This produces a new type of parameterized
→˓program object

This object has been removed from PyQuil 2. Please consider simply using a Python function for the above function-
ality:

par_p = rotator

Or using declared classical memory:

p = Program()
angle = p.declare('angle', 'REAL')
p += RX(angle, 0)
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1.6 Programs and Gates

Note: If you’re running locally, remember set up the QVM and quilc in server mode before trying to use them: Setting
Up Server Mode for PyQuil.

1.6.1 Introduction

Quantum programs are written in Forest using the Program object. This Program abstraction will help us compose
Quil programs.

from pyquil import Program

Programs are constructed by adding quantum gates to it, which are defined in the gates module. We can import all
standard gates with the following:

from pyquil.gates import *

Let’s instantiate a Program and add an operation to it. We will act an X gate on qubit 0.

p = Program()
p += X(0)

All qubits begin in the ground state. This means that if we measure a qubit without applying operations on it, we
expect to receive a 0 result. The X gate will rotate qubit 0 from the ground state to the excited state, so a measurement
immediately after should return a 1 result. More details about gate operations are explained in Introduction to Quantum
Computing.

We can print our pyQuil program (print(p)) to see the equivalent Quil representation:

X 0

This isn’t going to be very useful to us without measurements. In pyQuil 2.0, we have to DECLARE a memory space
to read measurement results, which we call “readout results” and abbreviate as ro. With measurement, our whole
program looks like this:

from pyquil import Program
from pyquil.gates import *

p = Program()
ro = p.declare('ro', 'BIT', 1)
p += X(0)
p += MEASURE(0, ro[0])

print(p)

DECLARE ro BIT[1]
X 0
MEASURE 0 ro[0]

We’ve instantiated a program, declared a memory space named ro with one single bit of memory, applied an X gate
on qubit 0, and finally measured qubit 0 into the zeroth index of the memory space named ro.

Awesome! That’s all we need to get results back. Now we can actually see what happens if we run this program on
the Quantum Virtual Machine (QVM). We just have to add a few lines to do this.
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from pyquil import get_qc

...

qc = get_qc('1q-qvm') # You can make any 'nq-qvm' this way for any reasonable 'n'
executable = qc.compile(p)
result = qc.run(executable)
print(result)

Congratulations! You just ran your program on the QVM. The returned value should be:

[[1]]

For more information on what the above result means, and on executing quantum programs on the QVM in general,
see The Quantum Computer. The remainder of this section of the docs will be dedicated to constructing programs in
detail, an essential part of becoming fluent in quantum programming.

1.6.2 The Standard Gate Set

The following gates methods come standard with Quil and gates.py:

• Pauli gates I, X, Y, Z

• Hadamard gate: H

• Phase gates: PHASE(theta), S, T

• Controlled phase gates: CZ, CPHASE00(alpha), CPHASE01(alpha), CPHASE10(alpha),
CPHASE(alpha)

• Cartesian rotation gates: RX(theta), RY(theta), RZ(theta)

• Controlled 𝑋 gates: CNOT, CCNOT

• Swap gates: SWAP, CSWAP, ISWAP, PSWAP(alpha)

The parameterized gates take a real or complex floating point number as an argument.

1.6.3 Declaring Memory

Classical memory regions must be explicitly requested and named by a Quil program using the DECLARE directive.
Details about the Quil directive can be found in declare.

In pyQuil, we declare memory with the .declare method on a Program. Let’s inspect the function signature

# pyquil.quil.Program

def declare(self, name, memory_type='BIT', memory_size=1, shared_region=None,
→˓offsets=None):

and break down each argument:

• name is any name you want to give this memory region.

• memory_type is one of 'REAL', 'BIT', 'OCTET', or 'INTEGER' (given as a string). Only BIT and
OCTET always have a determined size, which is 1 bit and 8 bits respectively.

• memory_size is the number of elements of that type to reserve.
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• shared_region and offsets allow you to alias memory regions. For example, you might want to name
the third bit in your readout array as q3_ro. SHARING is currently disallowed for our QPUs, so we won’t
focus on this here.

Now we can get into an example.

from pyquil import Program

p = Program()
ro = p.declare('ro', 'BIT', 16)
theta = p.declare('theta', 'REAL')

Warning: .declare cannot be chained, since it doesn’t return a modified Program object.

Notice that the .declare method returns a reference to the memory we’ve just declared. We will need this reference
to make use of these memory spaces again. Let’s see how the Quil is looking so far:

DECLARE ro BIT[16]
DECLARE theta REAL[1]

That’s all we have to do to declare the memory. Continue to the next section on Measurement to learn more about
using ro to store measured readout results. Check out Parametric Compilation to see how you might use theta to
compile gate parameters dynamically.

1.6.4 Measurement

There are several ways you can handle measurements in your program. We will start with the simplest method – letting
the QuantumComputer abstraction do it for us.

from pyquil import Program, get_qc
from pyquil.gates import H, CNOT

# Get our QuantumComputer instance, with a Quantum Virutal Machine (QVM) backend
qc = get_qc("8q-qvm")

# Construct a simple Bell State
p = Program(H(0), CNOT(0, 1))

results = qc.run_and_measure(p, trials=10)
print(results)

{0: array([1, 1, 0, 1, 0, 0, 1, 1, 0, 1]),
1: array([1, 1, 0, 1, 0, 0, 1, 1, 0, 1]),
2: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
3: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
4: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
5: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
6: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
7: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])}

The method .run_and_measure will handle declaring memory for readout results, adding MEASURE instructions
for each qubit in the QVM, telling the QVM how many trials to run, running and returning the measurement results.

You might sometimes want finer grained control. In this case, we’re probably only interested in the results on qubits 0
and 1, but .run_and_measure returns the results for all eight qubits in the QVM. We can change our program to
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be more particular about what we want.

from pyquil import Program
from pyquil.gates import *

p = Program()
ro = p.declare('ro', 'BIT', 2)
p += H(0)
p += CNOT(0, 1)
p += MEASURE(0, ro[0])
p += MEASURE(1, ro[1])

In the last two lines, we’ve added our MEASURE instructions, saying that we want to store the result of qubit 0 into the
0th bit of ro, and the result of qubit 1 into the 1st bit of ro. The following snippet could be a useful way to measure
many qubits, in particular, on a lattice that doesn’t start at qubit 0 (although you can use the compiler to re-index your
qubits):

qubits = [5, 6, 7]
# ...
for i, q in enumerate(qubits):

p += MEASURE(q, ro[i])

Note: The QPU can only handle MEASURE final programs. You can’t operate gates after measurements.

Specifying the number of trials

Quantum computing is inherently probabilistic. We often have to repeat the same experiment many times to get the
results we need. Sometimes we expect the results to all be the same, such as when we apply no gates, or only an X
gate. When we prepare a superposition state, we expect probabilistic outcomes, such as a 50% probability measuring
0 or 1.

The number of shots (also called trials) is the number of times to execute a program at once. This determines the
length of the results that are returned.

As we saw above, the .run_and_measure method of the QuantumComputer object can handle multiple exe-
cutions of a program. If you would like more explicit control for representing multi-shot execution, another way to
do this is with .wrap_in_numshots_loop. This puts the number of shots to be run in the representation of the
program itself, as opposed to in the arguments list of the execution method itself. Below, we specify that our program
should be executed 1000 times.

p = Program()
... # build up your program here...
p.wrap_in_numshots_loop(1000)

Note: Did You Know?

The word “shot” comes from experimental physics where an experiment is performed many times, and each result is
called a shot.
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1.6.5 Parametric Compilation

Modern quantum algorithms are often parametric, following a hybrid model. In this hybrid model, the program ansatz
(template of gates) is fixed, and iteratively updated with new parameters. These new parameters are often determined
by an update given by a classical optimizer. Depending on the complexity of the algorithm, problem of interest, and
capabilities of the classical optimizer, this loop may need to run many times. In order to efficiently operate within this
hybrid model, parametric compilation can be used.

Parametric compilation allows one to compile the program ansatz just once. Making use of declared memory regions,
we can load values to the parametric gates at execution time, after compilation. Taking the compiler out of the
execution loop for programs like this offers a huge performance improvement compared to compiling the program
each time a parameter update is required. (Some more details about this and an example are found here.)

The first step is to build our parametric program, which functions like a template for all the precise programs we will
run. Below we create a simple example program to illustrate, which puts the qubit onto the equator of the Bloch Sphere
and then rotates it around the Z axis for some variable angle theta before applying another X pulse and measuring.

import numpy as np

from pyquil import Program
from pyquil.gates import RX, RZ, MEASURE

qubit = 0

p = Program()
ro = p.declare("ro", "BIT", 1)
theta_ref = p.declare("theta", "REAL")

p += RX(np.pi / 2, qubit)
p += RZ(theta_ref, qubit)
p += RX(-np.pi / 2, qubit)

p += MEASURE(qubit, ro[0])

Note: The example program, although simple, is actually more than just a toy example. It is similar to an experiment
which measures the qubit frequency.

Notice how theta hasn’t been specified yet. The next steps will have to involve a QuantumComputer or a compiler
implementation. For simplicity, we will demonstrate with a QuantumComputer instance.

from pyquil import get_qc

# Get a Quantum Virtual Machine to simulate execution
qc = get_qc("1q-qvm")
executable = qc.compile(p)

We are able to compile our program, even with theta still not specified. Now we want to run our program with
theta filled in for, say, 200 values between 0 and 2𝜋. We demonstrate this below.

# Somewhere to store each list of results
parametric_measurements = []

for theta in np.linspace(0, 2 * np.pi, 200):
# Get the results of the run with the value we want to execute with
bitstrings = qc.run(executable, {'theta': [theta]})

(continues on next page)
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# Store our results
parametric_measurements.append(bitstrings)

In the example here, if you called qc.run(executable) and didn’t specify 'theta', the program would apply
RZ(0, qubit) for every execution.

Note: Classical memory defaults to zero. If you don’t specify a value for a declared memory region, it will be zero.

1.6.6 Gate Modifiers

Gate applications in Quil can be preceded by a gate modifier. There are two supported modifiers: DAGGER and
CONTROLLED. The DAGGER modifier represents the dagger of the gate. For instance,

DAGGER RX(pi/3) 0

would have an equivalent effect to RX(-pi/3) 0.

The CONTROLLED modifier takes a gate and makes it a controlled gate. For instance, one could write the Toffoli gate
in any of the three following ways:

CCNOT 0 1 2
CONTROLLED CNOT 0 1 2
CONTROLLED CONTROLLED X 0 1 2

Note: The letter C in the gate name has no semantic significance in Quil. To make a controlled Y gate, one cannot
write CY, but rather one has to write CONTROLLED Y.

All gates (objects deriving from the Gate class) provide the methods Gate.controlled(control_qubit)
and Gate.dagger() that can be used to programmatically apply the CONTROLLED and DAGGER modifiers.

For example, to produce the controlled-NOT gate (CNOT) with control qubit 0 and target qubit 1

prog = Program(X(1).controlled(0))

You can achieve the oft-used control-off gate (flip the target qubit 1 if the control qubit 0 is zero) with

prog = Program(X(0), X(1).controlled(0), X(0))

1.6.7 Defining New Gates

New gates can be easily added inline to Quil programs. All you need is a matrix representation of the gate. For
example, below we define a

√
𝑋 gate.

import numpy as np

from pyquil import Program
from pyquil.quil import DefGate

# First we define the new gate from a matrix
sqrt_x = np.array([[ 0.5+0.5j, 0.5-0.5j],

(continues on next page)
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[ 0.5-0.5j, 0.5+0.5j]])

# Get the Quil definition for the new gate
sqrt_x_definition = DefGate("SQRT-X", sqrt_x)
# Get the gate constructor
SQRT_X = sqrt_x_definition.get_constructor()

# Then we can use the new gate
p = Program()
p += sqrt_x_definition
p += SQRT_X(0)
print(p)

DEFGATE SQRT-X:
0.5+0.5i, 0.5-0.5i
0.5-0.5i, 0.5+0.5i

SQRT-X 0

Below we show how we can define 𝑋0 ⊗
√
𝑋1 as a single gate.

# A multi-qubit defgate example
x_gate_matrix = np.array(([0.0, 1.0], [1.0, 0.0]))
sqrt_x = np.array([[ 0.5+0.5j, 0.5-0.5j],

[ 0.5-0.5j, 0.5+0.5j]])
x_sqrt_x = np.kron(x_gate_matrix, sqrt_x)

Now we can use this gate in the same way that we used SQRT_X, but we will pass it two arguments rather than one,
since it operates on two qubits.

x_sqrt_x_definition = DefGate("X-SQRT-X", x_sqrt_x)
X_SQRT_X = x_sqrt_x_definition.get_constructor()

# Then we can use the new gate
p = Program(x_sqrt_x_definition, X_SQRT_X(0, 1))

Tip: To inspect the wavefunction that will result from applying your new gate, you can use the Wavefunction Simu-
lator (e.g. print(WavefunctionSimulator().wavefunction(p))).

1.6.8 Defining Parametric Gates

Let’s say we want to have a controlled RX gate. Since RX is a parametric gate, we need a slightly different way of
defining it than in the previous section.

from pyquil import Program, WavefunctionSimulator
from pyquil.parameters import Parameter, quil_sin, quil_cos
from pyquil.quilbase import DefGate
import numpy as np

# Define the new gate from a matrix
theta = Parameter('theta')
crx = np.array([

(continues on next page)
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[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, quil_cos(theta / 2), -1j * quil_sin(theta / 2)],
[0, 0, -1j * quil_sin(theta / 2), quil_cos(theta / 2)]

])

gate_definition = DefGate('CRX', crx, [theta])
CRX = gate_definition.get_constructor()

# Create our program and use the new parametric gate
p = Program()
p += gate_definition
p += H(0)
p += CRX(np.pi/2)(0, 1)

quil_sin and quil_cos work as the regular sines and cosines, but they support the parametrization. Parametrized
functions you can use with pyQuil are: quil_sin, quil_cos, quil_sqrt, quil_exp, and quil_cis.

Tip: To inspect the wavefunction that will result from applying your new gate, you can use the Wavefunction Simu-
lator (e.g. print(WavefunctionSimulator().wavefunction(p))).

1.6.9 Pragmas

PRAGMA directives give users more control over how Quil programs are processed or simulated but generally do not
change the semantics of the Quil program itself. As a general rule of thumb, deleting all PRAGMA directives in a Quil
program should leave a valid and semantically equivalent program.

In pyQuil, PRAGMA directives play many roles, such as controlling the behavior of gates in noisy simulations, or
commanding the Quil compiler to perform actions in a certain way. Here, we will cover the basics of two very
common use cases for including a PRAGMA in your program: qubit rewiring and delays. For a more comprehensive
review of what pragmas are and what the compiler supports, check out The Quil Compiler. For more information
about PRAGMA in Quil, see A Practical Quantum ISA, and Simulating Quantum Processor Errors.

Specifying A Qubit Rewiring Scheme

Qubit rewiring is one of the most powerful features of the Quil compiler. We are able to write Quil programs which are
agnostic to the topology of the chip, and the compiler will intelligently relabel our qubits to give better performance.

When we intend to run a program on the QPU, sometimes we write programs which use specific qubits targeting a
specific device topology, perhaps to achieve a high-performance program. Other times, we write programs that are
agnostic to the underlying topology, thereby making the programs more portable. Qubit rewiring accommodates both
use cases in an automatic way.

Consider the following program.

from pyquil import Program
from pyquil.gates import *

p = Program(X(3))

We’ve tested this on the QVM, and we’ve reserved a lattice on the QPU which has qubits 4, 5, and 6, but not qubit 3.
Rather than rewrite our program for each reservation, we modify our program to tell the compiler to do this for us.
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from pyquil.quil import Pragma

p = Program(Pragma('INITIAL_REWIRING', ['"GREEDY"']))
p += X(3)

Now, when we pass our program through the compiler (such as with QuantumComputer.compile()) we will
get native Quil with the qubit reindexed to one of 4, 5, or 6. If qubit 3 is available, and we don’t want that pulse to be
applied to any other qubit, we would instead use Pragma('INITIAL_REWIRING', ['"NAIVE"']]. Detailed
information about the available options is here.

Note: In general, we assume that the qubits you’re supplying as input are also the ones which you prefer to operate
on, and so NAIVE rewiring is the default.

Asking for a Delay

At times, we may want to add a delay in our program. Usually this is associated with qubit characterization. Delays are
not regular gate operations, and they do not affect the abstract semantics of the Quil program, so they’re implemented
with a PRAGMA directive.

# ...
# qubit index and time in seconds must be defined and provided
# the time argument accepts exponential notation e.g. 200e-9
p += Pragma('DELAY', [qubit], str(time))

Warning: These delays currently have effects on the real QPU. They have no effect on QVM’s even when those
QVM’s have noise models applied.

Warning: Keep in mind, the program duration is currently capped at 15 seconds, and the length of the program
is multiplied by the number of shots. If you have a 1000 shot program, where each shot contains a 100ms delay,
you won’t be able to execute it.

1.6.10 Ways to Construct Programs

PyQuil supports a variety of methods for constructing programs however you prefer. Multiple instructions can be
applied at once, and programs can be added together. PyQuil can also produce a Program by interpreting raw Quil
text. You can still use the more pyQuil 1.X style of using the .inst method to add instruction gates. Thus, the
following are all valid programs:

# Preferred method
p = Program()
p += X(0)
p += Y(1)
print(p)

# Multiple instructions in declaration
print(Program(X(0), Y(1)))

# A composition of two programs
(continues on next page)
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print(Program(X(0)) + Program(Y(1)))

# Raw Quil with newlines
print(Program("X 0\nY 1"))

# Raw Quil comma separated
print(Program("X 0", "Y 1"))

# Chained inst; less preferred
print(Program().inst(X(0)).inst(Y(1)))

All of the above methods will produce the same output:

X 0
Y 1

The pyquil.parser submodule provides a front-end to other similar parser functionality.

Fixing a Mistaken Instruction

If an instruction was appended to a program incorrectly, you can pop it off.

p = Program(X(0), Y(1))
print(p)

print("We can fix by popping:")
p.pop()
print(p)

X 0
Y 1

We can fix by popping:
X 0

1.6.11 QPU-allowable Quil

Apart from DECLARE and PRAGMA directives, a program must break into the following three regions, each optional:

1. A RESET command.

2. A sequence of quantum gate applications.

3. A sequence of MEASURE commands.

The only memory that is writeable is the region named ro, and only through MEASURE instructions. All other memory
is read-only.

The keyword SHARING is disallowed.

Compilation is unavailable for invocations of DEFGATEs with parameters read from classical memory.
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1.7 The Quantum Computer

PyQuil is used to build Quil (Quantum Instruction Language) programs and execute them on simulated or real quan-
tum devices. Quil is an opinionated quantum instruction language: its basic belief is that in the near term quantum
computers will operate as coprocessors, working in concert with traditional CPUs. This means that Quil is designed
to execute on a Quantum Abstract Machine (QAM) that has a shared classical/quantum architecture at its core.

A QAM must, therefore, implement certain abstract methods to manipulate classical and quantum states, such as
loading programs, writing to shared classical memory, and executing programs.

The program execution itself is sent from pyQuil to quantum computer endpoints, which will be one of two options:

• A Rigetti Quantum Virtual Machine (QVM)

• A Rigetti Quantum Processing Unit (QPU)

Within pyQuil, there is a QVM object and a QPU object which use the exposed APIs of the QVM and QPU servers,
respectively.

On this page, we’ll learn a bit about the QVM and QPU. Then we will show you how to use them from pyQuil with a
The QuantumComputer.

For information on constructing quantum programs, please refer back to Programs and Gates.

1.7.1 The Quantum Virtual Machine (QVM)

The Rigetti Quantum Virtual Machine is an implementation of the Quantum Abstract Machine from A Practical
Quantum Instruction Set Architecture.1 It is implemented in ANSI Common LISP and executes programs specified in
Quil.

The QVM is a wavefunction simulation of unitary evolution with classical control flow and shared quantum classical
memory.

The QVM is part of the Forest SDK, and it’s available for you to use on your local machine. After downloading and
installing the SDK, you can initialize a local QVM server by typing qvm -S into your terminal. You should see the
following message.

$ qvm -S

******************************
* Welcome to the Rigetti QVM *
******************************
Copyright (c) 2018 Rigetti Computing.

(Configured with 2048 MiB of workspace and 8 workers.)

[2018-11-06 18:18:18] Starting server on port 5000.

By default, the server is started on port 5000 on your local machine. Consequently, the endpoint which the pyQuil
QVM will default to for the QVM address is http://127.0.0.1:5000. When you run your program, a pyQuil
client will send a Quil program to the QVM server and wait for a response back.

It’s also possible to use the QVM from the command line. You can write a Quil program in its own file:

# example.quil

DECLARE ro BIT[1]

(continues on next page)

1 https://arxiv.org/abs/1608.03355
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RX(pi/2) 0
CZ 0 1

and then execute it with the QVM directly from the command line:

$ qvm -e < example.quil

[2018-11-30 11:13:58] Reading program.
[2018-11-30 11:13:58] Allocating memory for QVM of 2 qubits.
[2018-11-30 11:13:58] Allocation completed in 4 ms.
[2018-11-30 11:13:58] Loading quantum program.
[2018-11-30 11:13:58] Executing quantum program.
[2018-11-30 11:13:58] Execution completed in 6 ms.
[2018-11-30 11:13:58] Printing 2-qubit state.
[2018-11-30 11:13:58] Amplitudes:
[2018-11-30 11:13:58] |00>: 0.0, P= 0.0%
[2018-11-30 11:13:58] |01>: 0.0-1.0i, P=100.0%
[2018-11-30 11:13:58] |10>: 0.0, P= 0.0%
[2018-11-30 11:13:58] |11>: 0.0, P= 0.0%
[2018-11-30 11:13:58] Classical memory (low -> high indexes):
[2018-11-30 11:13:58] ro: 1 0

For a detailed description of how to use the qvm from the command line, see the QVM README or type man qvm
in your terminal.

We also offer a Wavefunction Simulator (formerly a part of the QVM object), which allows users to contruct and inspect
wavefunctions of quantum programs. Learn more about the Wavefunction Simulator here.

1.7.2 The Quantum Processing Unit (QPU)

To access a QPU endpoint, you will have to sign up for Quantum Cloud Services (QCS). Documentation for getting
started with your Quantum Machine Image (QMI) is found here. Using QCS, you will ssh into your QMI, and reserve
a QPU lattice for a particular time block.

When your reservation begins, you will be authorized to access the QPU. A configuration file will be automati-
cally populated for you with the proper QPU endpoint for your reservation. Both your QMI and the QPU are
located on premises, giving you low latency access to the QPU server. That server accepts jobs in the form of a
BinaryExecutableRequest object, which is precisely what you get back when you compile your program in
pyQuil and target the QPU (more on this soon). This request contains all the information necessary to run your pro-
gram on the control rack which sends and receives waveforms from the QPU, so that you can receive classical binary
readout results.

For information on available lattices, you can check out your dashboard at https://qcs.rigetti.com/dashboard after
you’ve been invited to QCS.

1.7.3 The QuantumComputer

The QuantumComputer abstraction offered by pyQuil provides an easy access point to the most critical objects
used in pyQuil for building and executing your quantum programs. We will cover the main methods and attributes on
this page. The QuantumComputer API Reference provides a reference for all of its methods and options.

At a high level, the QuantumComputer wraps around our favorite quantum computing tools:

• A quantum abstract machine .qam : this is our general purpose quantum computing device, which imple-
ments the required abstract methods described above. It is implemented as a QVM or QPU object in pyQuil.
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• A compiler .compiler : this determines how we manipulate the Quil input to something more efficient when
possible, and then into a form which our QAM can accept as input.

• A device .device : this specifies the topology and Instruction Set Architecture (ISA) of the targeted device
by listing the supported 1Q and 2Q gates.

When you instantiate a QuantumComputer instance, these subcomponents will be compatible with each other.
So, if you get a QPU implementation for the .qam, you will have a QPUCompiler for the .compiler, and your
.device will match the device used by the .compiler.

The QuantumComputer instance makes methods available which are built on the above objects. If you need more
fine grained controls for your work, you might try exploring what is offered by these objects.

For more information on each of the above, check out the following pages:

• Compiler API Reference

• Quil Compiler docs

• Device API Reference

• Providing Your Own Device Topology

• Quantum abstract machine (QAM) API Reference

• The Quil Whitepaper which describes the QAM

Instantiation

A decent amount of information needs to be provided to initialize the compiler, device, and qam attributes, much
of which is already in your config files (or provided reasonable defaults when running locally). Typically, you will
want a QuantumComputer which either:

• pertains to a real, available QPU device

• is a QVM but mimics the topology of a QPU

• is some generic QVM

All of this can be accomplished with get_qc().

def get_qc(name: str, *, as_qvm: bool = None, noisy: bool = None,
connection: ForestConnection = None) -> QuantumComputer:

from pyquil import get_qc

# Get a QPU
qc = get_qc(QPU_LATTICE_NAME) # QPU_LATTICE_NAME is just a string naming the device

# Get a QVM with the same topology as the QPU lattice
qc = get_qc(QPU_LATTICE_NAME, as_qvm=True)
# or, equivalently
qc = get_qc(f"{QPU_LATTICE_NAME}-qvm")

# A fully connected QVM
number_of_qubits = 10
qc = get_qc(f"{number_of_qubits}q-qvm")

For now, you will have to join QCS to get QPU_LATTICE_NAME by running the qcs lattices command from
your QMI. Access to the QPU is only possible from a QMI, during a booked reservation. If this sounds unfamiliar,
check out our documentation for QCS and join the waitlist.
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For more information about creating and adding your own noise models, check out Noise and Quantum Computation.

Note: When connecting to a QVM locally (such as with get_qc(..., as_qvm=True)) you’ll have to set up
the QVM in server mode.

Methods

Now that you have your qc, there’s a lot you can do with it. Most users will want to use compile, run or
run_and_measure, and qubits very regularly. The general flow of use would look like this:

from pyquil import get_qc, Program
from pyquil.gates import *

qc = get_qc('9q-square-qvm') # not general to any number of qubits, 9q-
→˓square-qvm is special

qubits = qc.qubits() # this information comes from qc.device
p = Program()
# ... build program, potentially making use of the qubits list

compiled_program = qc.compile(p) # this makes multiple calls to qc.compiler

results = qc.run(compiled_program) # this makes multiple calls to qc.qam

Note: In addition to a running QVM server, you will need a running quilc server to compile your program. Setting
up both of these is very easy, as explained here.

The .run_and_measure(...) method

This is the most high level way to run your program. With this method, you are not responsible for compiling your
program before running it, nor do you have to specify any MEASURE instructions; all qubits will get measured.

from pyquil import Program, get_qc
from pyquil.gates import X

qc = get_qc("8q-qvm")

p = Program(X(0))

results = qc.run_and_measure(p, trials=5)
print(results)

trials specifies how many times to run this program. Let’s see our results:

{0: array([1, 1, 1, 1, 1]),
1: array([0, 0, 0, 0, 0]),
2: array([0, 0, 0, 0, 0]),
3: array([0, 0, 0, 0, 0]),
4: array([0, 0, 0, 0, 0]),
5: array([0, 0, 0, 0, 0]),
6: array([0, 0, 0, 0, 0]),
7: array([0, 0, 0, 0, 0])}
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The return value is a dictionary from qubit index to results for all trials. Every qubit in the lattice is measured for you,
and as expected, qubit 0 has been flipped to the excited state for each trial.

The .run(...) method

The lower-level .run(...) method gives you more control over how you want to build and compile your program
than .run_and_measure does. You are responsible for compiling your program before running it. The above
program would be written in this way to execute with run:

from pyquil import Program, get_qc
from pyquil.gates import X, MEASURE

qc = get_qc("8q-qvm")

p = Program()
ro = p.declare('ro', 'BIT', 1)
p += X(0)
p += MEASURE(0, ro[0])
p += MEASURE(1, ro[1])
p.wrap_in_numshots_loop(5)

executable = qc.compile(p)
bitstrings = qc.run(executable) # .run takes in a compiled program, unlike .run_and_
→˓measure
print(bitstrings)

By specifying MEASURE ourselves, we will only get the results that we are interested in. To be completely equivalent
to the previous example, we would have to measure all eight qubits.

The results returned is a list of lists of integers. In the above case, that’s

[[1, 0], [1, 0], [1, 0], [1, 0], [1, 0]]

Let’s unpack this. The outer list is an enumeration over the trials; the argument given to
wrap_in_numshots_loop will match the length of results.

The inner list, on the other hand, is an enumeration over the results stored in the memory region named ro, which we
use as our readout register. We see that the result of this program is that the memory region ro[0] now stores the
state of qubit 0, which should be 1 after an 𝑋-gate. See Declaring Memory and Measurement for more details about
declaring and accessing classical memory regions.

Tip: Get the results for qubit 0 with numpy.array(bitstrings)[:,0].

Providing Your Own Device Topology

It is simple to provide your own device topology as long as you can give your qubits each a number, and specify which
edges exist. Here is an example, using the topology of our 16Q chip (two octagons connected by a square):

import networkx as nx

from pyquil.device import NxDevice, gates_in_isa
from pyquil.noise import decoherence_noise_with_asymmetric_ro

(continues on next page)
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qubits = [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17] # qubits are
→˓numbered by octagon
edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 0), # first
→˓octagon

(1, 16), (2, 15), # connections across the square
(10, 11), (11, 12), (13, 14), (14, 15), (15, 16), (16, 17), (10, 17)] #

→˓second octagon

# Build the NX graph
topo = nx.from_edgelist(edges)
# You would uncomment the next line if you have disconnected qubits
# topo.add_nodes_from(qubits)
device = NxDevice(topo)
device.noise_model = decoherence_noise_with_asymmetric_ro(gates_in_isa(device.get_
→˓isa())) # Optional

Now that you have your device, you could set qc.device and qc.compiler.device to point to your new
device, or use it to make new objects.

Simulating the QPU using the QVM

The QAM methods are intended to be used in the same way, whether a QVM or QPU is being targeted. Everywhere on
this page, you can swap out the type of the QAM (QVM <=> QPU) and you will still get reasonable results back. As
long as the topology of the devices are the same, programs compiled and ran on the QVM will be able to run on the
QPU and visa-versa. Since QuantumComputer is built on the QAM abstract class, its methods will also work for
both QAM implementations.

This makes the QVM a powerful tool for testing quantum programs before executing them on the QPU.

qpu = get_qc(QPU_LATTICE_NAME)
qvm = get_qc(QPU_LATTICE_NAME, as_qvm=True)

By simply providing as_qvm=True, we get a QVM which will have the same topology as the named QPU. It’s a
good idea to run your programs against the QVM before booking QPU time to iron out bugs. To learn more about how
to add noise models to your virtual QuantumComputer instance, check out Noise and Quantum Computation.

In the next section, we will see how to use the Wavefunction Simulator aspect of the Rigetti QVM to inspect the full
wavefunction set up by a Quil program.

1.8 The Wavefunction Simulator

Formerly a part of the QVM object in pyQuil, the Wavefunction Simulator allows you to directly inspect the wave-
function of a quantum state prepared by your program. Because of the probabilistic nature of quantum information,
the programs you’ll be running on the QPU can give a distribution of outputs. When running on the QPU or QVM,
you would aggregate results (anywhere from tens of trials to 100k+!) that you can sample to get back a distribution.

With the Wavefunction Simulator, you can look at the distribution without having to collect samples from your pro-
gram. This can save a lot of time for small programs. Let’s walk through a basic example of using WavefunctionSim-
ulator:

from pyquil import Program
from pyquil.gates import *
from pyquil.api import WavefunctionSimulator

(continues on next page)
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wf_sim = WavefunctionSimulator()
coin_flip = Program(H(0))
wf_sim.wavefunction(coin_flip)

<pyquil.wavefunction.Wavefunction at 0x1088a2c10>

The return value is a Wavefunction object that stores the amplitudes of the quantum state. We can print this object

coin_flip = Program(H(0))
wavefunction = wf_sim.wavefunction(coin_flip)
print(wavefunction)

(0.7071067812+0j)|0> + (0.7071067812+0j)|1>

to see the amplitudes listed as a sum of computational basis states. We can index into those amplitudes directly or look
at a dictionary of associated outcome probabilities.

assert wavefunction[0] == 1 / np.sqrt(2)
# The amplitudes are stored as a numpy array on the Wavefunction object
print(wavefunction.amplitudes)
prob_dict = wavefunction.get_outcome_probs() # extracts the probabilities of outcomes
→˓as a dict
print(prob_dict)
prob_dict.keys() # these store the bitstring outcomes
assert len(wavefunction) == 1 # gives the number of qubits

[ 0.70710678+0.j 0.70710678+0.j]
{'1': 0.49999999999999989, '0': 0.49999999999999989}

It is important to remember that this wavefunction method is a useful debugging tool for small quantum systems,
and cannot be feasibly obtained on a quantum processor.

1.8.1 Multi-Qubit Basis Enumeration

The WavefunctionSimulator enumerates bitstrings such that qubit 0 is the least significant bit (LSB) and therefore on
the right end of a bitstring as shown in the table below which contains some examples.

bitstring qubit_(n-1) . . . qubit_2 qubit_1 qubit_0
1. . . 101 1 . . . 1 0 1
0. . . 110 0 . . . 1 1 0

This convention is counter to that often found in the quantum computing literature where bitstrings are often ordered
such that the lowest-index qubit is on the left. The vector representation of a wavefunction assumes the “canonical”
ordering of basis elements. I.e., for two qubits this order is 00, 01, 10, 11. In the typical Dirac notation for
quantum states, the tensor product of two different degrees of freedom is not always explicitly understood as having a
fixed order of those degrees of freedom. This is in contrast to the kronecker product between matrices which uses the
same mathematical symbol and is clearly not commutative. This, however, becomes important when writing things
down as coefficient vectors or matrices:

00 ⊗ 11 = 11 ⊗ 00 = 101,0 ≡

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠
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As a consequence there arise some subtle but important differences in the ordering of wavefunction and multi-qubit
gate matrix coefficients. According to our conventions the matrix

𝑈CNOT(1,0) ≡

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
corresponds to the Quil instruction CNOT(1, 0) which is counter to how most other people in the field order their
tensor product factors (or more specifically their kronecker products). In this convention CNOT(0, 1) is given by

𝑈CNOT(0,1) ≡

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠
For additional information why we decided on this basis ordering check out our note Someone shouts, “|01000>!”
Who is Excited?.

1.9 The Quil Compiler

1.9.1 Expectations for Program Contents

The QPUs have much more limited natural gate sets than the standard gate set offered by pyQuil: on Rigetti QPUs, the
gate operators are constrained to lie in RZ(𝜃), RX(k*𝜋/2), and CZ; and the gates are required to act on physically
available hardware (for single-qubit gates, this means acting only on live qubits, and for qubit-pair gates, this means
acting on neighboring qubits). However, as a programmer, it is often (though not always) desirable to to be able to
write programs which don’t take these details into account. These generally leads to more portable code if one isn’t
tied to a specific set of gates or QPU architecture. To ameliorate these limitations, the Rigetti software toolkit contains
an optimizing compiler that translates arbitrary Quil to native Quil and native Quil to executables suitable for Rigetti
hardware.

1.9.2 Interacting with the Compiler

After downloading the SDK, the Quil Compiler, quilc is available on your local machine. You can initialize a local
quilc server by typing quilc -S into your terminal. You should see the following message.

$ quilc -S
+-----------------+
| W E L C O M E |
| T O T H E |
| R I G E T T I |
| Q U I L |
| C O M P I L E R |
+-----------------+
Copyright (c) 2018 Rigetti Computing.

... - Launching quilc.

... - Spawning server at (tcp://*:5555) .

To get a description of quilc, and options and examples of its command line use, see quilc_man.

A QuantumComputer object supplied by the function pyquil.api.get_qc() comes equipped with a connec-
tion to your local Rigetti Quil compiler. This can be accessed using the instance method .compile(), as in the
following:
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from pyquil.quil import Pragma, Program
from pyquil.api import get_qc
from pyquil.gates import CNOT, H

qc = get_qc("9q-square-qvm")

ep = qc.compile(Program(H(0), CNOT(0,1), CNOT(1,2)))

print(ep.program) # here ep is of type PyquilExecutableResponse, which is not always
→˓inspectable

with output

PRAGMA EXPECTED_REWIRING "#(0 1 2 3 4 5 6 7)"
RZ(pi/2) 0
RX(pi/2) 0
RZ(-pi/2) 1
RX(pi/2) 1
CZ 1 0
RX(-pi/2) 1
RZ(-pi/2) 2
RX(pi/2) 2
CZ 2 1
RZ(-pi/2) 0
RZ(-pi/2) 1
RX(-pi/2) 2
RZ(pi/2) 2
PRAGMA CURRENT_REWIRING "#(0 1 2 3 4 5 6 7)"

The compiler connection is also available directly via the property qc.compiler. The precise class of this object
changes based on context (e.g., QPUCompiler, QVMCompiler), but it always conforms to the interface laid out by
pyquil.api._qac:

• compiler.quil_to_native_quil(program): This method converts a Quil program into native Quil,
according to the ISA that the compiler is initialized with. The input parameter is specified as a Program object,
and the output is given as a new Program object, equipped with a .metadata property that gives extraneous
information about the compilation output (e.g., gate depth, as well as many others). This call blocks until Quil
compilation finishes.

• compiler.native_quil_to_executable(nq_program): This method converts a native Quil pro-
gram, which is promised to consist only of native gates for a given ISA, into an executable suitable for submis-
sion to one of a QVM or a QPU. This call blocks until the executable is generated.

The instance method qc.compile described above is a combination of these two methods: first the incoming Quil
is nativized, and then that is immediately turned into an executable. Accordingly, the previous example snippet is
identical to the following:

from pyquil.quil import Pragma, Program
from pyquil.api import get_qc
from pyquil.gates import CNOT, H

qc = get_qc("9q-square-qvm")

p = Program(H(0), CNOT(0,1), CNOT(1,2))
np = qc.compiler.quil_to_native_quil(p)
ep = qc.compiler.native_quil_to_executable(np)

(continues on next page)
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print(ep.program) # here ep is of type PyquilExecutableResponse, which is not always
→˓inspectable

1.9.3 Legal compiler input

The QPU is not able to execute all possible Quil programs. At present, a Quil program qualifies for execution if has
the following form:

• The program may or may not begin with a RESET instruction. (If provided, the QPU will actively reset the
state of the quantum device to the ground state before program execution. If omitted, the QPU will wait for a
relaxation period to pass before program execution instead.)

• This is then followed by a block of native quantum gates. A gate is native if it is of the form RZ(𝜃) for any
value 𝜃, RX(k*𝜋/2) for an integer k, or CZ q0 q1 for q0, q1 a pair of qubits participating in a qubit-qubit
interaction.

• This is then followed by a block of MEASURE instructions.

1.9.4 Region-specific compiler features through PRAGMA

The Quil compiler can also be communicated with through PRAGMA commands embedded in the Quil program.

Note: The interface to the Quil compiler from pyQuil is under construction, and some of the PRAGMA directives will
soon be replaced by finer-grained method calls.

Preserved regions

The compiler can be circumvented in user-specified regions. The start of such a region is denoted by PRAGMA
PRESERVE_BLOCK, and the end is denoted by PRAGMA END_PRESERVE_BLOCK. The Quil compiler promises
not to modify any instructions contained in such a region.

Warning: If a preserved block is not legal QPU input, then it is not guaranteed to execute or it may produced
unexpected results.

The following is an example of a program that prepares a Bell state on qubits 0 and 1, then performs a time de-
lay to invite noisy system interaction before measuring the qubits. The time delay region is marked by PRAGMA
PRESERVE_BLOCK and PRAGMA END_PRESERVE_BLOCK; without these delimiters, the compiler will remove
the identity gates that serve to provide the time delay. However, the regions outside of the PRAGMA region will still be
compiled, converting the Bell state preparation to the native gate set.

DECLARE ro BIT[2]

# prepare a Bell state
H 0
CNOT 0 1

# wait a while
PRAGMA PRESERVE_BLOCK
I 0

(continues on next page)
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I 1
I 0
I 1
# ...
I 0
I 1
PRAGMA END_PRESERVE_BLOCK

# and read out the results
MEASURE 0 ro[0]
MEASURE 1 ro[1]

Parallelizable regions

The compiler can sometimes arrange gate sequences more cleverly if the user gives it hints about sequences of gates
that commute. A region containing commuting sequences is bookended by PRAGMA COMMUTING_BLOCKS and
PRAGMA END_COMMUTING_BLOCKS; within such a region, a given commuting sequence is bookended by PRAGMA
BLOCK and PRAGMA END_BLOCK.

Warning: Lying to the compiler about what blocks can commute can cause incorrect results.

The following snippet demonstrates this hinting syntax in a context typical of VQE-type algorithms: after a first stage
of performing some state preparation on individual qubits, there is a second stage of “mixing operations” that both
re-use qubit resources and mutually commute, followed by a final rotation and measurement. The following program
is naturally laid out on a ring with vertices (read either clockwise or counterclockwise) as 0, 1, 2, 3. After scheduling
the first round of preparation gates, the compiler will use the hinting to schedule the first and third blocks (which
utilize qubit pairs 0-1 and 2-3) before the second and fourth blocks (which utilize qubit pairs 1-2 and 0-3), resulting in
a reduction in circuit depth by one half. Without hinting, the compiler will instead execute the blocks in their written
order.

DECLARE ro BIT[4]

# Stage one
H 0
H 1
H 2
H 3

# Stage two
PRAGMA COMMUTING_BLOCKS
PRAGMA BLOCK
CNOT 0 1
RZ(0.4) 1
CNOT 0 1
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 1 2
RZ(0.6) 2
CNOT 1 2
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 2 3

(continues on next page)
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RZ(0.8) 3
CNOT 2 3
PRAGMA END_BLOCK
PRAGMA BLOCK
CNOT 0 3
RZ(0.9) 3
CNOT 0 3
PRAGMA END_BLOCK
PRAGMA END_COMMUTING_BLOCKS

# Stage three
H 0
H 1
H 2
H 3

MEASURE 0 ro[0]
MEASURE 1 ro[1]
MEASURE 2 ro[2]
MEASURE 3 ro[3]

Rewirings

When a Quil program contains multi-qubit instructions that do not name qubit-qubit links present on a target device,
the compiler will rearrange the qubits so that execution becomes possible. In order to help the user understand what
rearrangement may have been done, the compiler emits two forms of PRAGMA: PRAGMA EXPECTED_REWIRING
and PRAGMA CURRENT_REWIRING. From the perspective of the user, both PRAGMA instructions serve the same
purpose: PRAGMA ..._REWIRING "#(n0 n1 ... nk)" indicates that the logical qubit labeled j in the pro-
gram has been assigned to lie on the physical qubit labeled nj on the device. This is strictly for human-readability:
user-supplied instructions of the form PRAGMA [EXPECTED|CURRENT]_REWIRING are discarded and have no
effect.

In addition, you have some control over how the compiler constructs its rewiring, which is controlled by PRAGMA
INITIAL_REWIRING. The syntax is as follows.

# <type> can be NAIVE, RANDOM, PARTIAL, or GREEDY
#
# The double quotes are required.
PRAGMA INITIAL_REWIRING "<type>"

Including this before any non-pragmas will allow the compiler to alter its rewiring behavior. The possible options are:

• NAIVE (default): The compiler will start with an identity mapping as the initial rewiring. In particular, qubits
will not be rewired unless the program requests a qubit-qubit interaction not natively available on the QPU.

• PARTIAL: The compiler will start with nothing assigned to each physical qubit. Then, it will fill in the logical-
to-physical mapping as it encounters new qubits in the program, making its best guess for where they should be
placed.

• RANDOM: the compiler will start with a random permutation.

• GREEDY: the compiler will make a guess for the initial rewiring based on a quick initial scan of the entire
program.

Note: NAIVE rewiring is the default, and for the most part, it follows the “Do What I Mean” (DWIM) principle. It
is the least sophisticated, but attempts to follow what the user has constructed with their program. Choosing another
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rewiring, such as PARTIAL, may lead to higher-performing programs because the compiler has more freedom to
optimize the layout of the gates on the qubits.

1.9.5 Common Error Messages

The compiler itself is subject to some limitations, and some of the more commonly observed errors follow:

• ! ! ! Error: Matrices do not lie in the same projective class. The compiler
attempted to decompose an operator as native Quil instructions, and the resulting instructions do not match
the original operator. This can happen when the original operator is not a unitary matrix, and could indicate an
invalid DEFGATE block. In some rare circumstances, it can also happen due to floating point precision issues.

1.10 Noise and Quantum Computation

1.10.1 Modeling Noisy Quantum Gates

Pure States vs. Mixed States

Errors in quantum computing can introduce classical uncertainty in what the underlying state is. When this happens
we sometimes need to consider not only wavefunctions but also probabilistic sums of wavefunctions when we are
uncertain as to which one we have. For example, if we think that an X gate was accidentally applied to a qubit with
a 50-50 chance then we would say that there is a 50% chance we have the 0 state and a 50% chance that we have
a 1 state. This is called an “impure” or “mixed”state in that it isn’t just a wavefunction (which is pure) but instead
a distribution over wavefunctions. We describe this with something called a density matrix, which is generally an
operator. Pure states have very simple density matrices that we can write as an outer product of a ket vector 𝜓 with its
own bra version 𝜓 = 𝜓†. For a pure state the density matrix is simply

𝜌𝜓 = 𝜓𝜓.

The expectation value of an operator for a mixed state is given by

⟨𝑋⟩𝜌 = 𝑋𝜌

where · is the trace of an operator, which is the sum of its diagonal elements, which is independent of choice of basis.
Pure state density matrices satisfy

𝜌 is pure ⇔ 𝜌2 = 𝜌

which you can easily verify for 𝜌𝜓 assuming that the state is normalized. If we want to describe a situation with
classical uncertainty between states 𝜌1 and 𝜌2, then we can take their weighted sum

𝜌 = 𝑝𝜌1 + (1 − 𝑝)𝜌2

where 𝑝 ∈ [0, 1] gives the classical probability that the state is 𝜌1.

Note that classical uncertainty in the wavefunction is markedly different from superpositions. We can represent su-
perpositions using wavefunctions, but use density matrices to describe distributions over wavefunctions. You can read
more about density matrices here [DensityMatrix].
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Quantum Gate Errors

For a quantum gate given by its unitary operator 𝑈 , a “quantum gate error” describes the scenario in which the actually
induces transformation deviates from 𝜓 ↦→ 𝑈𝜓. There are two basic types of quantum gate errors:

1. coherent errors are those that preserve the purity of the input state, i.e., instead of the above mapping we carry
out a perturbed, but unitary operation 𝜓 ↦→ �̃�𝜓, where �̃� ̸= 𝑈 .

2. incoherent errors are those that do not preserve the purity of the input state, in this case we must actually
represent the evolution in terms of density matrices. The state 𝜌 := 𝜓𝜓 is then mapped as

𝜌 ↦→
𝑚∑︁
𝑗=1

𝐾𝑗𝜌𝐾
†
𝑗 ,

where the operators {𝐾1,𝐾2, . . . ,𝐾𝑚} are called Kraus operators and must obey
∑︀𝑚
𝑗=1𝐾

†
𝑗𝐾𝑗 = 𝐼 to conserve

the trace of 𝜌. Maps expressed in the above form are called Kraus maps. It can be shown that every physical
map on a finite dimensional quantum system can be represented as a Kraus map, though this representation is
not generally unique. You can find more information about quantum operations here

In a way, coherent errors are in principle amendable by more precisely calibrated control. Incoherent errors are more
tricky.

Why Do Incoherent Errors Happen?

When a quantum system (e.g., the qubits on a quantum processor) is not perfectly isolated from its environment it
generally co-evolves with the degrees of freedom it couples to. The implication is that while the total time evolution
of system and environment can be assumed to be unitary, restriction to the system state generally is not.

Let’s throw some math at this for clarity: Let our total Hilbert space be given by the tensor product of system and
environment Hilbert spaces: ℋ = ℋ𝑆 ⊗ ℋ𝐸 . Our system “not being perfectly isolated” must be translated to the
statement that the global Hamiltonian contains a contribution that couples the system and environment:

𝐻 = 𝐻𝑆 ⊗ 𝐼 + 𝐼 ⊗𝐻𝐸 + 𝑉

where 𝑉 non-trivally acts on both the system and the environment. Consequently, even if we started in an initial state
that factorized over system and environment 𝜓𝑆,0 ⊗ 𝜓𝐸,0 if everything evolves by the Schrödinger equation

𝜓𝑡 = 𝑒−𝑖
𝐻𝑡
~ (𝜓𝑆,0 ⊗ 𝜓𝐸,0)

the final state will generally not admit such a factorization.

A Toy Model

In this (somewhat technical) section we show how environment interaction can corrupt an identity gate and
derive its Kraus map. For simplicity, let us assume that we are in a reference frame in which both the system and
environment Hamiltonian’s vanish 𝐻𝑆 = 0, 𝐻𝐸 = 0 and where the cross-coupling is small even when multiplied by
the duration of the time evolution ‖ 𝑡𝑉~ ‖2 ∼ 𝜖 ≪ 1 (any operator norm ‖ · ‖ will do here). Let us further assume that
𝑉 =

√
𝜖𝑉𝑆⊗𝑉𝐸 (the more general case is given by a sum of such terms) and that the initial environment state satisfies

𝜓𝐸,0𝑉𝐸𝜓𝐸,0 = 0. This turns out to be a very reasonable assumption in practice but a more thorough discussion
exceeds our scope.

Then the joint system + environment state 𝜌 = 𝜌𝑆,0 ⊗ 𝜌𝐸,0 (now written as a density matrix) evolves as

𝜌 ↦→ 𝜌′ := 𝑒−𝑖
𝑉 𝑡
~ 𝜌𝑒+𝑖

𝑉 𝑡
~
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Using the Baker-Campbell-Hausdorff theorem we can expand this to second order in 𝜖

𝜌′ = 𝜌− 𝑖𝑡

~
[𝑉, 𝜌] − 𝑡2

2~2
[𝑉, [𝑉, 𝜌]] +𝑂(𝜖3/2)

We can insert the initially factorizable state 𝜌 = 𝜌𝑆,0 ⊗ 𝜌𝐸,0 and trace over the environmental degrees of freedom to
obtain

𝜌′𝑆 := 𝜌′𝐸 = 𝜌𝑆,0 𝜌𝐸,01⏟  ⏞  − 𝑖
√
𝜖𝑡

~

⎡⎢⎣𝑉𝑆𝜌𝑆,0 𝑉𝐸𝜌𝐸,0⏟  ⏞  
𝜓𝐸,0𝑉𝐸𝜓𝐸,0=0

−𝜌𝑆,0𝑉𝑆 𝜌𝐸,0𝑉𝐸⏟  ⏞  
𝜓𝐸,0𝑉𝐸𝜓𝐸,0=0

⎤⎥⎦
⏟  ⏞  

0

(1.1)

− 𝜖𝑡2

2~2
[︀
𝑉 2
𝑆 𝜌𝑆,0𝑉

2
𝐸𝜌𝐸,0 + 𝜌𝑆,0𝑉

2
𝑆 𝜌𝐸,0𝑉

2
𝐸 − 2𝑉𝑆𝜌𝑆,0𝑉𝑆𝑉𝐸𝜌𝐸,0𝑉𝐸

]︀
(1.2)

= 𝜌𝑆,0 −
𝛾

2

[︀
𝑉 2
𝑆 𝜌𝑆,0 + 𝜌𝑆,0𝑉

2
𝑆 − 2𝑉𝑆𝜌𝑆,0𝑉𝑆

]︀
(1.3)

where the coefficient in front of the second part is by our initial assumption very small 𝛾 := 𝜖𝑡2

2~2𝑉
2
𝐸𝜌𝐸,0 ≪ 1. This

evolution happens to be approximately equal to a Kraus map with operators 𝐾1 := 𝐼 − 𝛾
2𝑉

2
𝑆 ,𝐾2 :=

√
𝛾𝑉𝑆 :

𝜌𝑆 → 𝜌′𝑆 = 𝐾1𝜌𝐾
†
1 +𝐾2𝜌𝐾

†
2 = 𝜌− 𝛾

2

[︀
𝑉 2
𝑆 𝜌+ 𝜌𝑉 2

𝑆

]︀
+ 𝛾𝑉𝑆𝜌𝑆𝑉𝑆 +𝑂(𝛾2) (1.4)

This agrees to 𝑂(𝜖3/2) with the result of our derivation above. This type of derivation can be extended to many other
cases with little complication and a very similar argument is used to derive the Lindblad master equation.

1.10.2 Noisy Gates on the Rigetti QVM

As of today, users of our Forest SDK can annotate their QUIL programs by certain pragma statements that inform the
QVM that a particular gate on specific target qubits should be replaced by an imperfect realization given by a Kraus
map.

The QVM propagates pure states — so how does it simulate noisy gates? It does so by yielding the correct outcomes
in the average over many executions of the QUIL program: When the noisy version of a gate should be applied
the QVM makes a random choice which Kraus operator is applied to the current state with a probability that ensures
that the average over many executions is equivalent to the Kraus map. In particular, a particular Kraus operator 𝐾𝑗 is
applied to 𝜓𝑆

𝜓′
𝑆 =

1
√
𝑝𝑗
𝐾𝑗𝜓𝑆

with probability 𝑝𝑗 := 𝜓𝑆𝐾
†
𝑗𝐾𝑗𝜓𝑆 . In the average over many execution 𝑁 ≫ 1 we therefore find that

𝜌′𝑆 =
1

𝑁

𝑁∑︁
𝑛=1

𝜓′
𝑛𝑆𝜓

′
𝑛𝑆 (1.5)

=
1

𝑁

𝑁∑︁
𝑛=1

𝑝−1
𝑗𝑛
𝐾𝑗𝑛𝜓

′
𝑆𝜓

′
𝑆𝐾

†
𝑗𝑛

(1.6)

where 𝑗𝑛 is the chosen Kraus operator label in the 𝑛-th trial. This is clearly a Kraus map itself! And we can group
identical terms and rewrite it as

𝜌′𝑆 =

𝑛∑︁
ℓ=1

𝑁ℓ
𝑁
𝑝−1
ℓ 𝐾ℓ𝜓

′
𝑆𝜓

′
𝑆𝐾

†
ℓ (1.7)
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where𝑁ℓ is the number of times that Kraus operator label ℓwas selected. For large enough𝑁 we know that𝑁ℓ ≈ 𝑁𝑝ℓ
and therefore

𝜌′𝑆 ≈
𝑛∑︁
ℓ=1

𝐾ℓ𝜓
′
𝑆𝜓

′
𝑆𝐾

†
ℓ (1.8)

which proves our claim. The consequence is that noisy gate simulations must generally be repeated many times
to obtain representative results.

Getting Started

1. Come up with a good model for your noise. We will provide some examples below and may add more such
examples to our public repositories over time. Alternatively, you can characterize the gate under consideration
using Quantum Process Tomography or Gate Set Tomography and use the resulting process matrices to obtain a
very accurate noise model for a particular QPU.

2. Define your Kraus operators as a list of numpy arrays kraus_ops = [K1, K2, ..., Km].

3. For your QUIL program p, call:

p.define_noisy_gate("MY_NOISY_GATE", [q1, q2], kraus_ops)

where you should replace MY_NOISY_GATE with the gate of interest and q1, q2 the indices of the qubits.

Scroll down for some examples!

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom
import matplotlib.colors as colors
%matplotlib inline

from pyquil import Program, get_qc
from pyquil.gates import CZ, H, I, X, MEASURE
from scipy.linalg import expm

# We could ask for "2q-noisy-qvm" but we will be specifying
# our noise model as PRAGMAs on the Program itself.
qc = get_qc('2q-qvm')

Example 1: Amplitude Damping

Amplitude damping channels are imperfect identity maps with Kraus operators

𝐾1 =

(︂
1 0
0

√
1 − 𝑝

)︂
𝐾2 =

(︂
0

√
𝑝

0 0

)︂
where 𝑝 is the probability that a qubit in the 1 state decays to the 0 state.

def damping_channel(damp_prob=.1):
"""
Generate the Kraus operators corresponding to an amplitude damping

(continues on next page)
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noise channel.

:params float damp_prob: The one-step damping probability.
:return: A list [k1, k2] of the Kraus operators that parametrize the map.
:rtype: list
"""
damping_op = np.sqrt(damp_prob) * np.array([[0, 1],

[0, 0]])

residual_kraus = np.diag([1, np.sqrt(1-damp_prob)])
return [residual_kraus, damping_op]

def append_kraus_to_gate(kraus_ops, g):
"""
Follow a gate `g` by a Kraus map described by `kraus_ops`.

:param list kraus_ops: The Kraus operators.
:param numpy.ndarray g: The unitary gate.
:return: A list of transformed Kraus operators.
"""
return [kj.dot(g) for kj in kraus_ops]

def append_damping_to_gate(gate, damp_prob=.1):
"""
Generate the Kraus operators corresponding to a given unitary
single qubit gate followed by an amplitude damping noise channel.

:params np.ndarray|list gate: The 2x2 unitary gate matrix.
:params float damp_prob: The one-step damping probability.
:return: A list [k1, k2] of the Kraus operators that parametrize the map.
:rtype: list
"""
return append_kraus_to_gate(damping_channel(damp_prob), gate)

%%time

# single step damping probability
damping_per_I = 0.02

# number of program executions
trials = 200

results_damping = []
lengths = np.arange(0, 201, 10, dtype=int)
for jj, num_I in enumerate(lengths):

print("\r{}/{}, ".format(jj, len(lengths)), end="")

p = Program(X(0))
# want increasing number of I-gates
p.inst([I(0) for _ in range(num_I)])
p.inst(MEASURE(0, 0))

# overload identity I on qc 0
p.define_noisy_gate("I", [0], append_damping_to_gate(np.eye(2), damping_per_I))

(continues on next page)
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p.wrap_in_numshots_loop(trials)
qc.qam.random_seed = int(num_I)
res = qc.run(p)
results_damping.append([np.mean(res), np.std(res) / np.sqrt(trials)])

results_damping = np.array(results_damping)

dense_lengths = np.arange(0, lengths.max()+1, .2)
survival_probs = (1-damping_per_I)**dense_lengths
logpmf = binom.logpmf(np.arange(trials+1)[np.newaxis, :], trials, survival_probs[:,
→˓np.newaxis])/np.log(10)

DARK_TEAL = '#48737F'
FUSCHIA = "#D6619E"
BEIGE = '#EAE8C6'
cm = colors.LinearSegmentedColormap.from_list('anglemap', ["white", FUSCHIA, BEIGE],
→˓N=256, gamma=1.5)

plt.figure(figsize=(14, 6))
plt.pcolor(dense_lengths, np.arange(trials+1)/trials, logpmf.T, cmap=cm, vmin=-4,
→˓vmax=logpmf.max())
plt.plot(dense_lengths, survival_probs, c=BEIGE, label="Expected mean")
plt.errorbar(lengths, results_damping[:,0], yerr=2*results_damping[:,1], c=DARK_TEAL,

label=r"noisy qvm, errorbars $ = \pm 2\hat{\sigma}$", marker="o")
cb = plt.colorbar()
cb.set_label(r"$\log_{10} \mathrm{Pr}(n_1; n_{\rm trials}, p_{\rm survival}(t))$",
→˓size=20)

plt.title("Amplitude damping model of a single qubit", size=20)
plt.xlabel(r"Time $t$ [arb. units]", size=14)
plt.ylabel(r"$n_1/n_{\rm trials}$", size=14)
plt.legend(loc="best", fontsize=18)
plt.xlim(*lengths[[0, -1]])
plt.ylim(0, 1)
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Example 2: Dephased CZ-gate

Dephasing is usually characterized through a qubit’s 𝑇2 time. For a single qubit the dephasing Kraus operators are

𝐾1(𝑝) =
√︀

1 − 𝑝𝐼2

𝐾2(𝑝) =
√
𝑝𝜎𝑍

where 𝑝 = 1− exp(−𝑇2/𝑇gate) is the probability that the qubit is dephased over the time interval of interest, 𝐼2 is the
2 × 2-identity matrix and 𝜎𝑍 is the Pauli-Z operator.

For two qubits, we must construct a Kraus map that has four different outcomes:

1. No dephasing

2. Qubit 1 dephases

3. Qubit 2 dephases

4. Both dephase

The Kraus operators for this are given by

𝐾 ′
1(𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾1(𝑞) (1.9)

𝐾 ′
2(𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾1(𝑞) (1.10)

𝐾 ′
3(𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾2(𝑞) (1.11)

𝐾 ′
4(𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾2(𝑞) (1.12)

where we assumed a dephasing probability 𝑝 for the first qubit and 𝑞 for the second.
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Dephasing is a diagonal error channel and the CZ gate is also diagonal, therefore we can get the combined map of
dephasing and the CZ gate simply by composing 𝑈CZ the unitary representation of CZ with each Kraus operator

𝐾CZ
1 (𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾1(𝑞)𝑈CZ (1.13)

𝐾CZ
2 (𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾1(𝑞)𝑈CZ(1.14)

𝐾CZ
3 (𝑝, 𝑞) = 𝐾1(𝑝) ⊗𝐾2(𝑞)𝑈CZ(1.15)

𝐾CZ
4 (𝑝, 𝑞) = 𝐾2(𝑝) ⊗𝐾2(𝑞)𝑈CZ(1.16)

Note that this is not always accurate, because a CZ gate is often achieved through non-diagonal interaction
Hamiltonians! However, for sufficiently small dephasing probabilities it should always provide a good starting
point.

def dephasing_kraus_map(p=.1):
"""
Generate the Kraus operators corresponding to a dephasing channel.

:params float p: The one-step dephasing probability.
:return: A list [k1, k2] of the Kraus operators that parametrize the map.
:rtype: list
"""
return [np.sqrt(1-p)*np.eye(2), np.sqrt(p)*np.diag([1, -1])]

def tensor_kraus_maps(k1, k2):
"""
Generate the Kraus map corresponding to the composition
of two maps on different qubits.

:param list k1: The Kraus operators for the first qubit.
:param list k2: The Kraus operators for the second qubit.
:return: A list of tensored Kraus operators.
"""
return [np.kron(k1j, k2l) for k1j in k1 for k2l in k2]

%%time
# single step damping probabilities
ps = np.linspace(.001, .5, 200)

# number of program executions
trials = 500

results = []

for jj, p in enumerate(ps):

corrupted_CZ = append_kraus_to_gate(
tensor_kraus_maps(

dephasing_kraus_map(p),
dephasing_kraus_map(p)

),
np.diag([1, 1, 1, -1]))

print("\r{}/{}, ".format(jj, len(ps)), end="")

# make Bell-state
p = Program(H(0), H(1), CZ(0,1), H(1))

(continues on next page)
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p.inst(MEASURE(0, 0))
p.inst(MEASURE(1, 1))

# overload identity I on qc 0
p.define_noisy_gate("CZ", [0, 1], corrupted_CZ)
p.wrap_in_numshots_loop(trials)
qc.qam.random_seed = jj
res = qc.run(p)
results.append(res)

results = np.array(results)

Z1s = (2*results[:,:,0]-1.)
Z2s = (2*results[:,:,1]-1.)
Z1Z2s = Z1s * Z2s

Z1m = np.mean(Z1s, axis=1)
Z2m = np.mean(Z2s, axis=1)
Z1Z2m = np.mean(Z1Z2s, axis=1)

plt.figure(figsize=(14, 6))
plt.axhline(y=1.0, color=FUSCHIA, alpha=.5, label="Bell state")

plt.plot(ps, Z1Z2m, "x", c=FUSCHIA, label=r"$\overline{Z_1 Z_2}$")
plt.plot(ps, 1-2*ps, "--", c=FUSCHIA, label=r"$\langle Z_1 Z_2\rangle_{\rm theory}$")

plt.plot(ps, Z1m, "o", c=DARK_TEAL, label=r"$\overline{Z}_1$")
plt.plot(ps, 0*ps, "--", c=DARK_TEAL, label=r"$\langle Z_1\rangle_{\rm theory}$")

plt.plot(ps, Z2m, "d", c="k", label=r"$\overline{Z}_2$")
plt.plot(ps, 0*ps, "--", c="k", label=r"$\langle Z_2\rangle_{\rm theory}$")

plt.xlabel(r"Dephasing probability $p$", size=18)
plt.ylabel(r"$Z$-moment", size=18)
plt.title(r"$Z$-moments for a Bell-state prepared with dephased CZ", size=18)
plt.xlim(0, .5)
plt.legend(fontsize=18)
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1.10.3 Adding Decoherence Noise

In this example, we investigate how a program might behave on a near-term device that is subject to T1-
and T2-type noise using the convenience function pyquil.noise.add_decoherence_noise(). The
same module also contains some other useful functions to define your own types of noise models, e.g.,
pyquil.noise.tensor_kraus_maps() for generating multi-qubit noise processes, pyquil.noise.
combine_kraus_maps() for describing the succession of two noise processes and pyquil.noise.
append_kraus_to_gate() which allows appending a noise process to a unitary gate.

from pyquil.quil import Program
from pyquil.paulis import PauliSum, PauliTerm, exponentiate, exponential_map,
→˓trotterize
from pyquil.gates import MEASURE, H, Z, RX, RZ, CZ
import numpy as np

The Task

We want to prepare 𝑒𝑖𝜃𝑋𝑌 and measure it in the 𝑍 basis.

from numpy import pi
theta = pi/3
xy = PauliTerm('X', 0) * PauliTerm('Y', 1)
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The Idiomatic PyQuil Program

prog = exponential_map(xy)(theta)
print(prog)

H 0
RX(pi/2) 1
CNOT 0 1
RZ(2*pi/3) 1
CNOT 0 1
H 0
RX(-pi/2) 1

The Compiled Program

To run on a real device, we must compile each program to the native gate set for the device. The high-level noise
model is similarly constrained to use a small, native gate set. In particular, we can use

• 𝐼

• 𝑅𝑍(𝜃)

• 𝑅𝑋(±𝜋/2)

• 𝐶𝑍

For simplicity, the compiled program is given below but generally you will want to use a compiler to do this step for
you.

def get_compiled_prog(theta):
return Program([

RZ(-pi/2, 0),
RX(-pi/2, 0),
RZ(-pi/2, 1),
RX( pi/2, 1),
CZ(1, 0),
RZ(-pi/2, 1),
RX(-pi/2, 1),
RZ(theta, 1),
RX( pi/2, 1),
CZ(1, 0),
RX( pi/2, 0),
RZ( pi/2, 0),
RZ(-pi/2, 1),
RX( pi/2, 1),
RZ(-pi/2, 1),

])

Scan Over Noise Parameters

We perform a scan over three levels of noise each at 20 theta points.

Specifically, we investigate T1 values of 1, 3, and 10 us. By default, T2 = T1 / 2, 1 qubit gates take 50 ns, and 2 qubit
gates take 150 ns.

In alignment with the device, 𝐼 and parametric 𝑅𝑍 are noiseless while 𝑅𝑋 and 𝐶𝑍 gates experience 1q and 2q gate
noise, respectively.
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from pyquil.api import QVMConnection
cxn = QVMConnection()

t1s = np.logspace(-6, -5, num=3)
thetas = np.linspace(-pi, pi, num=20)
t1s * 1e6 # us

array([ 1. , 3.16227766, 10. ])

from pyquil.noise import add_decoherence_noise
records = []
for theta in thetas:

for t1 in t1s:
prog = get_compiled_prog(theta)
noisy = add_decoherence_noise(prog, T1=t1).inst([

MEASURE(0, 0),
MEASURE(1, 1),

])
bitstrings = np.array(cxn.run(noisy, [0,1], 1000))

# Expectation of Z0 and Z1
z0, z1 = 1 - 2*np.mean(bitstrings, axis=0)

# Expectation of ZZ by computing the parity of each pair
zz = 1 - (np.sum(bitstrings, axis=1) % 2).mean() * 2

record = {
'z0': z0,
'z1': z1,
'zz': zz,
'theta': theta,
't1': t1,

}
records += [record]

Plot the Results

Note that to run the code below you will need to install the pandas and seaborn packages.

%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
sns.set(style='ticks', palette='colorblind')

import pandas as pd
df_all = pd.DataFrame(records)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12,4))

for t1 in t1s:
df = df_all.query('t1 == @t1')

ax1.plot(df['theta'], df['z0'], 'o-')
ax2.plot(df['theta'], df['z1'], 'o-')
ax3.plot(df['theta'], df['zz'], 'o-', label='T1 = {:.0f} us'.format(t1*1e6))

(continues on next page)
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ax3.legend(loc='best')

ax1.set_ylabel('Z0')
ax2.set_ylabel('Z1')
ax3.set_ylabel('ZZ')
ax2.set_xlabel(r'$\theta$')
fig.tight_layout()

1.10.4 Modeling Readout Noise

Qubit-Readout can be corrupted in a variety of ways. The two most relevant error mechanisms on the Rigetti QPU
right now are:

1. Transmission line noise that makes a 0-state look like a 1-state or vice versa. We call this classical readout
bit-flip error. This type of readout noise can be reduced by tailoring optimal readout pulses and using super-
conducting, quantum limited amplifiers to amplify the readout signal before it is corrupted by classical noise at
the higher temperature stages of our cryostats.

2. T1 qubit decay during readout (our readout operations can take more than a µsecond unless they have been spe-
cially optimized), which leads to readout signals that initially behave like 1-states but then collapse to something
resembling a 0-state. We will call this T1-readout error. This type of readout error can be reduced by achieving
shorter readout pulses relative to the T1 time, i.e., one can try to reduce the readout pulse length, or increase the
T1 time or both.

Qubit Measurements

This section provides the necessary theoretical foundation for accurately modeling noisy quantum measurements on
superconducting quantum processors. It relies on some of the abstractions (density matrices, Kraus maps) introduced
in our notebook on gate noise models.

The most general type of measurement performed on a single qubit at a single time can be characterized by some set
𝒪 of measurement outcomes, e.g., in the simplest case 𝒪 = {0, 1}, and some unnormalized quantum channels (see
notebook on gate noise models) that encapsulate 1. the probability of that outcome 2. how the qubit state is affected
conditional on the measurement outcome.
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Here the outcome is understood as classical information that has been extracted from the quantum system.

Projective, Ideal Measurement

The simplest case that is usually taught in introductory quantum mechanics and quantum information courses are
Born’s rule and the projection postulate which state that there exist a complete set of orthogonal projection operators

𝑃𝒪 := {Π𝑥 Projector | 𝑥 ∈ 𝒪},

i.e., one for each measurement outcome. Any projection operator must satisfy Π†
𝑥 = Π𝑥 = Π2

𝑥 and for an orthogonal
set of projectors any two members satisfy

Π𝑥Π𝑦 = 𝛿𝑥𝑦Π𝑥 =

{︃
0 if 𝑥 ̸= 𝑦

Π𝑥 if 𝑥 = 𝑦

and for a complete set we additionally demand that
∑︀
𝑥∈𝒪 Π𝑥 = 1. Following our introduction to gate noise, we write

quantum states as density matrices as this is more general and in closer correspondence with classical probability
theory.

With these the probability of outcome 𝑥 is given by 𝑝(𝑥) = Π𝑥𝜌Π𝑥 = Π2
𝑥𝜌 = Π𝑥𝜌 and the post measurement state is

𝜌𝑥 =
1

𝑝(𝑥)
Π𝑥𝜌Π𝑥,

which is the projection postulate applied to mixed states.

If we were a sloppy quantum programmer and accidentally erased the measurement outcome then our best guess for
the post measurement state would be given by something that looks an awful lot like a Kraus map:

𝜌post measurement =
∑︁
𝑥∈𝒪

𝑝(𝑥)𝜌𝑥 =
∑︁
𝑥∈𝒪

Π𝑥𝜌Π𝑥.

The completeness of the projector set ensures that the trace of the post measurement is still 1 and the Kraus map form
of this expression ensures that 𝜌post measurement is a positive (semi-)definite operator.

Classical Readout Bit-Flip Error

Consider now the ideal measurement as above, but where the outcome 𝑥 is transmitted across a noisy classical channel
that produces a final outcome 𝑥′ ∈ 𝒪′ = {0′, 1′} according to some conditional probabilities 𝑝(𝑥′|𝑥) that can be
recorded in the assignment probability matrix

𝑃𝑥′|𝑥 =

(︂
𝑝(0|0) 𝑝(0|1)
𝑝(1|0) 𝑝(1|1)

)︂
Note that this matrix has only two independent parameters as each column must be a valid probability distribution, i.e.
all elements are non-negative and each column sums to 1.

This matrix allows us to obtain the probabilities p′ := (𝑝(𝑥′ = 0), 𝑝(𝑥′ = 1))𝑇 from the original outcome probabilities
p := (𝑝(𝑥 = 0), 𝑝(𝑥 = 1))𝑇 via p′ = 𝑃𝑥′|𝑥p. The difference relative to the ideal case above is that now an outcome
𝑥′ = 0 does not necessarily imply that the post measurement state is truly Π0𝜌Π0/𝑝(𝑥 = 0). Instead, the post
measurement state given a noisy outcome 𝑥′ must be

𝜌𝑥′ =
∑︁
𝑥∈𝒪

𝑝(𝑥|𝑥′)𝜌𝑥

=
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)
𝑝(𝑥)

𝑝(𝑥′)
𝜌𝑥

=
1

𝑝(𝑥′)

∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥𝜌Π𝑥
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where

𝑝(𝑥′) =
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)𝑝(𝑥)

=
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥𝜌Π𝑥

= 𝜌
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥

= 𝜌𝐸′
𝑥.

where we have exploited the cyclical property of the trace 𝐴𝐵𝐶 = 𝐵𝐶𝐴 and the projection property Π2
𝑥 = Π𝑥. This

has allowed us to derive the noisy outcome probabilities from a set of positive operators

𝐸𝑥′ :=
∑︁
𝑥∈𝒪

𝑝(𝑥′|𝑥)Π𝑥 ≥ 0

that must sum to 1: ∑︁
𝑥′∈𝒪′

𝐸′
𝑥 =

∑︁
𝑥∈𝒪

[︃ ∑︁
𝑥′∈𝒪′

𝑝(𝑥′|𝑥)

]︃
⏟  ⏞  

1

Π𝑥 =
∑︁
𝑥∈𝒪

Π𝑥 = 1.

The above result is a type of generalized Bayes’ theorem that is extremely useful for this type of (slightly) generalized
measurement and the family of operators {𝐸𝑥′ |𝑥′ ∈ 𝒪′} whose expectations give the probabilities is called a positive
operator valued measure (POVM). These operators are not generally orthogonal nor valid projection operators but
they naturally arise in this scenario. This is not yet the most general type of measurement, but it will get us pretty far.

How to Model 𝑇1 Error

T1 type errors fall outside our framework so far as they involve a scenario in which the quantum state itself is corrupted
during the measurement process in a way that potentially erases the pre-measurement information as opposed to a loss
of purely classical information. The most appropriate framework for describing this is given by that of measurement
instruments, but for the practical purpose of arriving at a relatively simple description, we propose describing this by
a T1 damping Kraus map followed by the noisy readout process as described above.

Further Reading

Chapter 3 of John Preskill’s lecture notes http://www.theory.caltech.edu/people/preskill/ph229/notes/chap3.pdf

1.10.5 Working with Readout Noise

1. Come up with a good guess for your readout noise parameters 𝑝(0|0) and 𝑝(1|1), the off-diagonals then follow
from the normalization of 𝑃𝑥′|𝑥. If your assignment fidelity 𝐹 is given, and you assume that the classical bit flip
noise is roughly symmetric, then a good approximation is to set 𝑝(0|0) = 𝑝(1|1) = 𝐹 .

2. For your QUIL program p, and a qubit index q call:

p.define_noisy_readout(q, p00, p11)

where you should replace p00 and p11 with the assumed probabilities.

Scroll down for some examples!
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from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from pyquil.quil import Program, MEASURE, Pragma
from pyquil.api.qvm import QVMConnection
from pyquil.gates import I, X, RX, H, CNOT
from pyquil.noise import (estimate_bitstring_probs, correct_bitstring_probs,

bitstring_probs_to_z_moments, estimate_assignment_probs)

DARK_TEAL = '#48737F'
FUSCHIA = '#D6619E'
BEIGE = '#EAE8C6'

cxn = QVMConnection()

Example 1: Rabi Sequence with Noisy Readout

%%time

# number of angles
num_theta = 101

# number of program executions
trials = 200

thetas = np.linspace(0, 2*np.pi, num_theta)

p00s = [1., 0.95, 0.9, 0.8]

results_rabi = np.zeros((num_theta, len(p00s)))

for jj, theta in enumerate(thetas):
for kk, p00 in enumerate(p00s):

cxn.random_seed = hash((jj, kk))
p = Program(RX(theta, 0))
# assume symmetric noise p11 = p00
p.define_noisy_readout(0, p00=p00, p11=p00)
p.measure(0, 0)
res = cxn.run(p, [0], trials=trials)
results_rabi[jj, kk] = np.sum(res)

CPU times: user 1.2 s, sys: 73.6 ms, total: 1.27 s
Wall time: 3.97 s

plt.figure(figsize=(14, 6))
for jj, (p00, c) in enumerate(zip(p00s, [DARK_TEAL, FUSCHIA, "k", "gray"])):

plt.plot(thetas, results_rabi[:, jj]/trials, c=c, label=r"$p(0|0)=p(1|1)={:g}$".
→˓format(p00))
plt.legend(loc="best")
plt.xlim(*thetas[[0,-1]])
plt.ylim(-.1, 1.1)
plt.grid(alpha=.5)
plt.xlabel(r"RX angle $\theta$ [radian]", size=16)

(continues on next page)
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plt.ylabel(r"Excited state fraction $n_1/n_{\rm trials}$", size=16)
plt.title("Effect of classical readout noise on Rabi contrast.", size=18)

<matplotlib.text.Text at 0x104314250>

Example 2: Estimate the Assignment Probabilities

Here we will estimate 𝑃𝑥′|𝑥 ourselves! You can run some simple experiments to estimate the assignment probability
matrix directly from a QPU.

On a perfect quantum computer

estimate_assignment_probs(0, 1000, cxn, Program())

array([[ 1., 0.],
[ 0., 1.]])

On an imperfect quantum computer

cxn.seed = None
header0 = Program().define_noisy_readout(0, .85, .95)
header1 = Program().define_noisy_readout(1, .8, .9)
header2 = Program().define_noisy_readout(2, .9, .85)

ap0 = estimate_assignment_probs(0, 100000, cxn, header0)
ap1 = estimate_assignment_probs(1, 100000, cxn, header1)
ap2 = estimate_assignment_probs(2, 100000, cxn, header2)
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print(ap0, ap1, ap2, sep="\n")

[[ 0.84967 0.04941]
[ 0.15033 0.95059]]

[[ 0.80058 0.09993]
[ 0.19942 0.90007]]

[[ 0.90048 0.14988]
[ 0.09952 0.85012]]

Example 3: Correct for Noisy Readout

3a) Correcting the Rabi Signal from Above

ap_last = np.array([[p00s[-1], 1 - p00s[-1]],
[1 - p00s[-1], p00s[-1]]])

corrected_last_result = [correct_bitstring_probs([1-p, p], [ap_last])[1] for p in
→˓results_rabi[:, -1] / trials]

plt.figure(figsize=(14, 6))
for jj, (p00, c) in enumerate(zip(p00s, [DARK_TEAL, FUSCHIA, "k", "gray"])):

if jj not in [0, 3]:
continue

plt.plot(thetas, results_rabi[:, jj]/trials, c=c, label=r"$p(0|0)=p(1|1)={:g}$".
→˓format(p00), alpha=.3)
plt.plot(thetas, corrected_last_result, c="red", label=r"Corrected $p(0|0)=p(1|1)={:g}
→˓$".format(p00s[-1]))
plt.legend(loc="best")
plt.xlim(*thetas[[0,-1]])
plt.ylim(-.1, 1.1)
plt.grid(alpha=.5)
plt.xlabel(r"RX angle $\theta$ [radian]", size=16)
plt.ylabel(r"Excited state fraction $n_1/n_{\rm trials}$", size=16)
plt.title("Corrected contrast", size=18)

<matplotlib.text.Text at 0x1055e7310>
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We find that the corrected signal is fairly noisy (and sometimes exceeds the allowed interval [0, 1]) due to the overall
very small number of samples 𝑛 = 200.

3b) Corrupting and Correcting GHZ State Correlations

In this example we will create a GHZ state 1√
2

[|000⟩ + |111⟩] and measure its outcome probabilities with and without
the above noise model. We will then see how the Pauli-Z moments that indicate the qubit correlations are corrupted
(and corrected) using our API.

ghz_prog = Program(H(0), CNOT(0, 1), CNOT(1, 2),
MEASURE(0, 0), MEASURE(1, 1), MEASURE(2, 2))

print(ghz_prog)
results = cxn.run(ghz_prog, [0, 1, 2], trials=10000)

H 0
CNOT 0 1
CNOT 1 2
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]

header = header0 + header1 + header2
noisy_ghz = header + ghz_prog
print(noisy_ghz)
noisy_results = cxn.run(noisy_ghz, [0, 1, 2], trials=10000)
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PRAGMA READOUT-POVM 0 "(0.85 0.050000000000000044 0.15000000000000002 0.95)"
PRAGMA READOUT-POVM 1 "(0.8 0.09999999999999998 0.19999999999999996 0.9)"
PRAGMA READOUT-POVM 2 "(0.9 0.15000000000000002 0.09999999999999998 0.85)"
H 0
CNOT 0 1
CNOT 1 2
MEASURE 0 [0]
MEASURE 1 [1]
MEASURE 2 [2]

Uncorrupted probability for |000⟩ and |111⟩

probs = estimate_bitstring_probs(results)
probs[0, 0, 0], probs[1, 1, 1]

(0.50419999999999998, 0.49580000000000002)

As expected the outcomes 000 and 111 each have roughly probability 1/2.

Corrupted probability for |011⟩ and |100⟩

noisy_probs = estimate_bitstring_probs(noisy_results)
noisy_probs[0, 0, 0], noisy_probs[1, 1, 1]

(0.30869999999999997, 0.3644)

The noise-corrupted outcome probabilities deviate significantly from their ideal values!

Corrected probability for |011⟩ and |100⟩

corrected_probs = correct_bitstring_probs(noisy_probs, [ap0, ap1, ap2])
corrected_probs[0, 0, 0], corrected_probs[1, 1, 1]

(0.50397601453064977, 0.49866843912900716)

The corrected outcome probabilities are much closer to the ideal value.

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 100, 010, 001 from non-noisy data

We expect these to all be very small

zmoments = bitstring_probs_to_z_moments(probs)
zmoments[1, 0, 0], zmoments[0, 1, 0], zmoments[0, 0, 1]

(0.0083999999999999631, 0.0083999999999999631, 0.0083999999999999631)
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Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 110, 011, 101 from non-noisy data

We expect these to all be close to 1.

zmoments[1, 1, 0], zmoments[0, 1, 1], zmoments[1, 0, 1]

(1.0, 1.0, 1.0)

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 100, 010, 001 from noise-corrected data

zmoments_corr = bitstring_probs_to_z_moments(corrected_probs)
zmoments_corr[1, 0, 0], zmoments_corr[0, 1, 0], zmoments_corr[0, 0, 1]

(0.0071476770049732075, -0.0078641261685578612, 0.0088462563282706852)

Estimate ⟨𝑍𝑗0𝑍𝑘1𝑍ℓ2⟩ for 𝑗𝑘𝑙 = 110, 011, 101 from noise-corrected data

zmoments_corr[1, 1, 0], zmoments_corr[0, 1, 1], zmoments_corr[1, 0, 1]

(0.99477496902638118, 1.0008376440216553, 1.0149652015905912)

Overall the correction can restore the contrast in our multi-qubit observables, though we also see that the correction
can lead to slightly non-physical expectations. This effect is reduced the more samples we take.

Alternative: A global Pauli error model

The Rigetti QVM has support for emulating certain types of noise models. One such model is parametric Pauli noise,
which is defined by a set of 6 probabilities:

• The probabilities 𝑃𝑋 , 𝑃𝑌 , and 𝑃𝑍 which define respectively the probability of a Pauli 𝑋 , 𝑌 , or 𝑍 gate getting
applied to each qubit after every gate application. These probabilities are called the gate noise probabilities.

• The probabilities 𝑃 ′
𝑋 , 𝑃 ′

𝑌 , and 𝑃 ′
𝑍 which define respectively the probability of a Pauli 𝑋 , 𝑌 , or 𝑍 gate getting

applied to the qubit being measured before it is measured. These probabilities are called the measurement noise
probabilities.

We can instantiate a noisy QVM by creating a new connection with these probabilities specified.

# 20% chance of a X gate being applied after gate applications and before
→˓measurements.
gate_noise_probs = [0.2, 0.0, 0.0]
meas_noise_probs = [0.2, 0.0, 0.0]
noisy_qvm = qvm(gate_noise=gate_noise_probs, measurement_noise=meas_noise_probs)

We can test this by applying an 𝑋-gate and measuring. Nominally, we should always measure 1.

p = Program().inst(X(0)).measure(0, 0)
print("Without Noise: {}".format(qvm.run(p, [0], 10)))
print("With Noise : {}".format(noisy_qvm.run(p, [0], 10)))
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Without Noise: [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]
With Noise : [[0], [0], [0], [0], [0], [1], [1], [1], [1], [0]]

1.11 Advanced Usage

Note: If you’re running locally, remember set up the QVM and quilc in server mode before trying to use them: Setting
Up Server Mode for PyQuil.

1.11.1 PyQuil Configuration Files

Network endpoints for the Rigetti Forest infrastructure and information pertaining to QPU access are stored in a pair of
configuration files. These files are located by default at ~/.qcs_config and ~/.forest_config. The location
can be changed by setting the environment variables QCS_CONFIG or FOREST_CONFIG to point to the new location.

When running on a QMI, the values in these configuration files are automatically managed so as to point to the correct
endpoints. When running locally, configuration files are not necessary. Thus, the average user will not have to do any
work to get their configuration files set up.

If for some reason you want to use an atypical configuration, you may need to modify these files.

The default QCS config file on any QMI looks similar to the following:

# .qcs_config
[Rigetti Forest]
url = https://forest-server.qcs.rigetti.com
key = 4fd12391-11eb-52ec-35c2-262765ae4c4f
user_id = 4fd12391-11eb-52ec-35c2-262765ae4c4f

[QPU]
exec_on_engage = bash exec_on_engage.sh

where

• url is the endpoint that pyQuil hits for device information and for the 2.0 endpoints,

• key stores the Forest 1.X API key,

• user_id stores a Forest 2.0 user ID, and

• exec_on_engage specifies the shell command that the QMI will launch when the QMI becomes QPU-
engaged. It would have no effect if you are running locally, but is important if you are running on the QMI. By
default, it runs the exec_on_engage.sh shell script. It’s best to leave the configuration as is, and edit that
script. More documentation about exec_on_engage.sh can be found in the QCS docs here.

The Forest config file on any QMI has these contents, with specific IP addresses filled in:

# .forest_config
[Rigetti Forest]
qpu_endpoint_address = None
qvm_address = http://10.1.165.XX:5000
compiler_server_address = tcp://10.1.165.XX:5555

where
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• qpu_endpoint_address is the endpoint where pyQuil will try to communicate with the QPU orchestrating
service during QPU-engagement. It may not appear until your QMI engages, and furthermore will have no effect
if you are running locally. It’s best to leave this alone. If you obtain access to one of our QPUs, we will fill it in
for you.

• qvm_address is the endpoint where pyQuil will try to communicate with the Rigetti Quantum Virtual Ma-
chine. On a QMI, this points to the provided QVM instance. On a local installation, this should be set to the
server endpoint for a locally running QVM instance. However, pyQuil will use the default value http://
localhost:5000 if this file isn’t found, which is the correct endpoint when you run the QVM locally with
qvm -S.

• compiler_server_address: This is the endpoint where pyQuil will try to communicate with the compiler
server. On a QMI, this points to a provided compiler server instance. On a local installation, this should be set
to the server endpoint for a locally running quilc instance. However, pyQuil will use the default value tcp:/
/localhost:5555 if this isn’t set, which is the correct endpoint when you run quilc locally with quilc
-S.

Note: PyQuil itself reads these values out using the helper class pyquil._config.PyquilConfig. PyQuil
users should not ever need to touch this class directly.

1.11.2 Using Qubit Placeholders

Note: The functionality provided inline by QubitPlaceholders is similar to writing a function which returns a
Program, with qubit indices taken as arguments to the function.

In pyQuil, we typically use integers to identify qubits

from pyquil import Program
from pyquil.gates import CNOT, H
print(Program(H(0), CNOT(0, 1)))

H 0
CNOT 0 1

However, when running on real, near-term QPUs we care about what particular physical qubits our program will
run on. In fact, we may want to run the same program on an assortment of different qubits. This is where using
QubitPlaceholders comes in.

from pyquil.quilatom import QubitPlaceholder
q0 = QubitPlaceholder()
q1 = QubitPlaceholder()
p = Program(H(q0), CNOT(q0, q1))
print(p)

H {q4402789176}
CNOT {q4402789176} {q4402789120}

If you try to use this program directly, it will not work

print(p.out())
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RuntimeError: Qubit q4402789176 has not been assigned an index

Instead, you must explicitly map the placeholders to physical qubits. By default, the function address_qubits
will address qubits from 0 to N.

from pyquil.quil import address_qubits
print(address_qubits(p))

H 0
CNOT 0 1

The real power comes into play when you provide an explicit mapping:

print(address_qubits(prog, qubit_mapping={
q0: 14,
q1: 19,

}))

H 14
CNOT 14 19

Register

Usually, your algorithm will use an assortment of qubits. You can use the convenience function
QubitPlaceholder.register() to request a list of qubits to build your program.

qbyte = QubitPlaceholder.register(8)
p_evens = Program(H(q) for q in qbyte)
print(address_qubits(p_evens, {q: i*2 for i, q in enumerate(qbyte)}))

H 0
H 2
H 4
H 6
H 8
H 10
H 12
H 14

1.11.3 Classical Control Flow

Note: Classical control flow is not yet supported on the QPU.

Here are a couple quick examples that show how much richer a Quil program can be with classical control flow. In
this first example, we create a while loop by following these steps:

1. Declare a register called flag_register to use as a boolean test for looping.

2. Initialize this register to 1 program so our while loop will execute. This is often called the loop preamble or
loop initialization.

3. Write the body of the loop in its own Program. This will be a program that applies an 𝑋 gate followed by a
𝐻 gate on our qubit.
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4. Using the while_do() method to add control flow.

from pyquil import Program
from pyquil.gates import *

# Initialize the Program and declare a 1 bit memory space for our boolean flag
outer_loop = Program()
flag_register = outer_loop.declare('flag_register', 'BIT')

# Set the initial flag value to 1
outer_loop += MOVE(flag_register, 1)

# Define the body of the loop with a new Program
inner_loop = Program()
inner_loop += Program(X(0), H(0))
inner_loop += MEASURE(0, flag_register)

# Run inner_loop in a loop until flag_register is 0
outer_loop.while_do(flag_register, inner_loop)

print(outer_loop)

DECLARE flag_register BIT[1]
MOVE flag_register 1
LABEL @START1
JUMP-UNLESS @END2 flag_register
X 0
H 0
MEASURE 0 flag_register
JUMP @START1
LABEL @END2

Notice that the outer_loop program applied a Quil instruction directly to a classical register. There are several
classical commands that can be used in this fashion:

• NOT which flips a classical bit

• AND which operates on two classical bits

• IOR which operates on two classical bits

• MOVE which moves the value of a classical bit at one classical address into another

• EXCHANGE which swaps the value of two classical bits

In this next example, we show how to do conditional branching in the form of the traditional if construct as in many
programming languages. Much like the last example, we construct programs for each branch of the if, and put it all
together by using the if_then() method.

# Declare our memory spaces
branching_prog = Program()
test_register = branching_prog.declare('test_register', 'BIT')
ro = branching_prog.declare('ro', 'BIT')

# Construct each branch of our if-statement. We can have empty branches
# simply by having empty programs.
then_branch = Program(X(0))
else_branch = Program()

(continues on next page)
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(continued from previous page)

# Construct our program so that the result in test_register is equally likely to be a
→˓0 or 1
branching_prog += H(1)
branching_prog += MEASURE(1, test_register)

# Add the conditional branching
branching_prog.if_then(test_register, then_branch, else_branch)

# Measure qubit 0 into our readout register
branching_prog += MEASURE(0, ro)

print(branching_prog)

DECLARE test_register BIT[1]
DECLARE ro BIT[1]
H 1
MEASURE 1 test_register
JUMP-WHEN @THEN1 test_register
JUMP @END2
LABEL @THEN1
X 0
LABEL @END2
MEASURE 0 ro

We can run this program a few times to see what we get in the readout register ro.

from pyquil import get_qc

qc = get_qc("2q-qvm")
branching_prog.wrap_in_numshots_loop(10)
qc.run(branching_prog)

[[1], [1], [1], [0], [1], [0], [0], [1], [1], [0]]

1.11.4 Pauli Operator Algebra

Many algorithms require manipulating sums of Pauli combinations, such as 𝜎 = 1
2𝐼 −

3
4𝑋0𝑌1𝑍3 + (5 − 2𝑖)𝑍1𝑋2,

where 𝐺𝑛 indicates the gate 𝐺 acting on qubit 𝑛. We can represent such sums by constructing PauliTerm and
PauliSum. The above sum can be constructed as follows:

from pyquil.paulis import ID, sX, sY, sZ

# Pauli term takes an operator "X", "Y", "Z", or "I"; a qubit to act on, and
# an optional coefficient.
a = 0.5 * ID()
b = -0.75 * sX(0) * sY(1) * sZ(3)
c = (5-2j) * sZ(1) * sX(2)

# Construct a sum of Pauli terms.
sigma = a + b + c
print(f"sigma = {sigma}")

sigma = (0.5+0j)*I + (-0.75+0j)*X0*Y1*Z3 + (5-2j)*Z1*X2
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Right now, the primary thing one can do with Pauli terms and sums is to construct the exponential of the Pauli term,
i.e., exp[−𝑖𝛽𝜎]. This is accomplished by constructing a parameterized Quil program that is evaluated when passed
values for the coefficients of the angle 𝛽.

Related to exponentiating Pauli sums we provide utility functions for finding the commuting subgroups of a Pauli sum
and approximating the exponential with the Suzuki-Trotter approximation through fourth order.

When arithmetic is done with Pauli sums, simplification is automatically done.

The following shows an instructive example of all three.

from pyquil.paulis import exponential_map

sigma_cubed = sigma * sigma * sigma
print(f"Simplified: {sigma_cubed}\n")

# Produce Quil code to compute exp[iX]
H = -1.0 * sX(0)
print(f"Quil to compute exp[iX] on qubit 0:\n"

f"{exponential_map(H)(1.0)}")

Simplified: (32.46875-30j)*I + (-16.734375+15j)*X0*Y1*Z3 + (71.5625-144.625j)*Z1*X2

Quil to compute exp[iX] on qubit 0:
H 0
RZ(-2.0) 0
H 0

exponential_map returns a function allowing you to fill in a multiplicative constant later. This commonly occurs
in variational algorithms. The function exponential_map is used to compute exp[−𝑖𝛼𝐻] without explicitly filling
in a value for 𝛼.

expH = exponential_map(H)
print(f"0:\n{expH(0.0)}\n")
print(f"1:\n{expH(1.0)}\n")
print(f"2:\n{expH(2.0)}")

0:
H 0
RZ(0) 0
H 0

1:
H 0
RZ(-2.0) 0
H 0

2:
H 0
RZ(-4.0) 0
H 0

To take it one step further, you can use Parametric Compilation with exponential_map. For instance:

ham = sZ(0) * sZ(1)
prog = Program()
theta = prog.declare('theta', 'REAL')
prog += exponential_map(ham)(theta)
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1.12 Exercises

1.12.1 Exercise 1: Quantum Dice

Write a quantum program to simulate throwing an 8-sided die. The Python function you should produce is:

def throw_octahedral_die():
# return the result of throwing an 8 sided die, an int between 1 and 8, by

→˓running a quantum program

Next, extend the program to work for any kind of fair die:

def throw_polyhedral_die(num_sides):
# return the result of throwing a num_sides sided die by running a quantum program

1.12.2 Exercise 2: Controlled Gates

We can use the full generality of NumPy to construct new gate matrices.

1. Write a function controlled which takes a 2× 2 matrix 𝑈 representing a single qubit operator, and makes a
4 × 4 matrix which is a controlled variant of 𝑈 , with the first argument being the control qubit.

2. Write a Quil program to define a controlled-𝑌 gate in this manner. Find the wavefunction when applying this
gate to qubit 1 controlled by qubit 0.

1.12.3 Exercise 3: Grover’s Algorithm

Write a quantum program for the single-shot Grover’s algorithm. The Python function you should produce is:

# data is an array of 0's and 1's such that there are exactly three times as many
# 0's as 1's
def single_shot_grovers(data):

# return an index that contains the value 1

As an example: single_shot_grovers([0,0,1,0]) should return 2.

HINT - Remember that the Grover’s diffusion operator is:⎛⎜⎜⎜⎝
2/𝑁 − 1 2/𝑁 · · · 2/𝑁

2/𝑁
...

. . .
2/𝑁 2/𝑁 − 1

⎞⎟⎟⎟⎠

1.12.4 Exercise 4: Prisoner’s Dilemma

A classic strategy game is the prisoner’s dilemma where two prisoners get the minimal penalty if they collaborate
and stay silent, get zero penalty if one of them defects and the other collaborates (incurring maximum penalty) and
get intermediate penalty if they both defect. This game has an equilibrium where both defect and incur intermediate
penalty.

However, things change dramatically when we allow for quantum strategies leading to the Quantum Prisoner’s
Dilemma.

Can you design a program that simulates this game?
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1.12.5 Exercise 5: Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum implementation of the discrete Fourier transform. The Fourier
transform can be used to transform a function from the time domain into the frequency domain.

Compute the discrete Fourier transform of [0, 1, 0, 0, 0, 0, 0, 0], using pyQuil:

a. Write a state preparation quantum program.

b. Write a function to make a 3-qubit QFT program, taking qubit indices as arguments.

c. Combine your solutions to part a and b into one program and use the WavefunctionSimulator to
get the solution.

Note: For a more challenging initial state, try 01100100.

Solution

Part a: Prepare the initial state

We are going to apply the QFT on the amplitudes of the states.

We want to prepare a state that corresponds to the sequence for which we want to compute the discrete Fourier
transform. As the exercise hinted in part b, we need 3 qubits to transform an 8 bit sequence. It is simplest to understand
if we think of the qubits as three digits in a binary string (aka bitstring). There are 8 possible values the bitstring can
have, and in our quantum state, each of these possibilities has an amplitude. Our 8 indices in the QFT sequence label
each of these states. For clarity:

|000⟩ => 10000000

|001⟩ => 01000000

. . .

|111⟩ -> 00000001

The sequence we want to compute is 01000000, so our initial state is simply |001⟩. For a bitstring with more
than one 1, we would want an equal superposition over all the selected states. (E.g. 01100000 would be an equal
superposition of |001⟩ and |010⟩).

To set up the |001⟩ state, we only have to apply one 𝑋-gate to the zeroth qubit.

from pyquil import Program
from pyquil.gates import *

state_prep = Program(X(0))

We can verify that this works by computing its wavefunction with the Wavefunction Simulator. However, we need to
add some “dummy” qubits, because otherwise wavefunction would return a two-element vector for only qubit 0.

from pyquil.api import WavefunctionSimulator

add_dummy_qubits = Program(I(1), I(2)) # The identity gate I has no affect

wf_sim = WavefunctionSimulator()
wavefunction = wf_sim.wavefunction(state_prep + add_dummy_qubits)
print(wavefunction)
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(1+0j)|001>

We’ll need wf_sim for part c, too.

Part b: Three qubit QFT program

In this part, we define a function, qft3, to make a 3-qubit QFT quantum program. The algorithm is nicely described
on this page. It is a mix of Hadamard and CPHASE gates, with a SWAP gate for bit reversal correction.

from math import pi

def qft3(q0, q1, q2):
p = Program()
p += [SWAP(q0, q2),

H(q0),
CPHASE(-pi / 2.0, q0, q1),
H(q1),
CPHASE(-pi / 4.0, q0, q2),
CPHASE(-pi / 2.0, q1, q2),
H(q2)]

return p

There is a very important detail to recognize here: The function qft3 doesn’t compute the QFT, but rather it makes a
quantum program to compute the QFT on qubits q0, q1, and q2.

We can see what this program looks like in Quil notation with print(qft(0, 1, 2)).

SWAP 0 2
H 0
CPHASE(-pi/2) 0 1
H 1
CPHASE(-pi/4) 0 2
CPHASE(-pi/2) 1 2
H 2

Part c: Execute the QFT

Combining parts a and b:

compute_qft_prog = state_prep + qft3(0, 1, 2)
wavefunction = wf_sim.wavefunction(compute_qft_prog)
print(wavefunction.amplitudes)

array([ 3.53553391e-01+0.j , 2.50000000e-01-0.25j ,
2.16489014e-17-0.35355339j, -2.50000000e-01-0.25j ,

-3.53553391e-01+0.j , -2.50000000e-01+0.25j ,
-2.16489014e-17+0.35355339j, 2.50000000e-01+0.25j ])

We can verify this works by computing the inverse FFT on the output with NumPy and seeing that we get back our
input (with some floating point error).

from numpy.fft import ifft
ifft(wavefunction.amplitudes, norm="ortho")
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array([0.+0.00000000e+00j, 1.+9.38127079e-17j, 0.+0.00000000e+00j,
0.-1.53080850e-17j, 0.+0.00000000e+00j, 0.-6.31965379e-17j,
0.+0.00000000e+00j, 0.-1.53080850e-17j])

After ignoring the terms that are on the order of 1e-17, we get [0, 1, 0, 0, 0, 0, 0, 0], which was our
input!

1.12.6 Example: The Meyer-Penny Game

To create intuition for quantum algorithms, it is useful (and fun) to play with the abstraction that the software provides.

The Meyer-Penny Game1 is a simple example we’ll use from quantum game theory. The interested reader may want to
read more about quantum game theory in the article Toward a general theory of quantum games2. The Meyer-Penny
Game goes as follows:

The Starship Enterprise, during one of its deep-space missions, is facing an immediate calamity at the edge of a
wormhole, when a powerful alien suddenly appears. The alien, named Q, offers to help Picard, the captain of the
Enterprise, under the condition that Picard beats Q in a simple game of heads or tails.

The rules

Picard is to place a penny heads up into an opaque box. Then Picard and Q take turns to flip or not flip the penny
without being able to see it; first Q then P then Q again. After this the penny is revealed;Q wins if it shows heads (H),
while tails (T) makes Picard the winner.

Picard vs. Q

Picard quickly estimates that his chance of winning is 50% and agrees to play the game. He loses the first round
and insists on playing again. To his surprise Q agrees, and they continue playing several rounds more, each of which
Picard loses. How is that possible?

What Picard did not anticipate is that Q has access to quantum tools. Instead of flipping the penny, Q puts the penny
into a superposition of heads and tails proportional to the quantum state |𝐻⟩ + |𝑇 ⟩. Then no matter whether Picard
flips the penny or not, it will stay in a superposition (though the relative sign might change). In the third step Q undoes
the superposition and always finds the penny to show heads.

Let’s see how this works!

To simulate the game we first construct the corresponding quantum circuit, which takes two qubits: one to simulate
Picard’s choice whether or not to flip the penny, and the other to represent the penny. The initial state for all qubits
is |0⟩ (which is mapped to |𝑇 ⟩, tails). To simulate Picard’s decision, we assume that he chooses randomly whether or
not to flip the coin, in agreement with the optimal strategy for the classic penny-flip game. This random choice can be
created by putting one qubit into an equal superposition, e.g. with the Hadamard gate 𝐻 , and then measure its state.
The measurement will show heads or tails with equal probability 𝑝ℎ = 𝑝𝑡 = 0.5.

To simulate the penny flip game we take the second qubit and put it into its excited state |1⟩ (which is mapped to |𝐻⟩,
heads) by applying the X (or NOT) gate. Q’s first move is to apply the Hadamard gate H. Picard’s decision about the
flip is simulated as a CNOT operation where the control bit is the outcome of the random number generator described
above. Finally Q applies a Hadamard gate again, before we measure the outcome. The full circuit is shown in the
figure below.

1 https://link.aps.org/doi/10.1103/PhysRevLett.82.1052
2 https://arxiv.org/abs/quant-ph/0611234

88 Chapter 1. Contents

https://link.aps.org/doi/10.1103/PhysRevLett.82.1052
https://arxiv.org/abs/quant-ph/0611234


pyQuil Documentation, Release 2.6.0

In pyQuil

We first import and initialize the necessary tools3

from pyquil import Program
from pyquil.api import WavefunctionSimulator
from pyquil.gates import *

wf_sim = WavefunctionSimulator()
p = Program()

and then wire it all up into the overall measurement circuit; remember that qubit 0 is the penny, and qubit 1 represents
Picard’s choice.

p += X(0)
p += H(0)
p += H(1)
p += CNOT(1, 0)
p += H(0)

We use the quantum mechanics principle of deferred measurement to keep all the measurement logic separate from
the gates. Our method call to the WavefunctionSimulator will handle measuring for us4.

Finally, we play the game several times. (Remember to run your qvm server.)

wf_sim.run_and_measure(p, trials=10)

array([[1, 1],
[1, 1],
[1, 1],
[1, 1],
[1, 1],
[1, 0],
[1, 1],
[1, 1],
[1, 1],
[1, 0]])

In each trial, the first number is the outcome of the game, whereas the second number represents Picard’s choice to
flip or not flip the penny.

Inspecting the results, we see that no matter what Picard does, Q will always win!

3 See more: Programs and Gates
4 More about measurements and run_and_measure: Measurement
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1.13 Changelog

1.13.1 v2.6 (March 29, 2019)

Improvements and Changes:

• Added a CODEOWNERS file for default reviewers (gh-855).

• Bifurcated the QPUCompiler endpoint parameter into two – quilc_endpoint and
qpu_compiler_endpoint – to reflect changes in Quantum Cloud Services (gh-856).

• Clarified documentation around the DELAY pragma (gh-862).

• Added information about the local_qvm context manager to the getting started documentation (gh-851).

Bugfixes:

• Added a non-None default timeout to the QVMCompiler object (gh-850) and the get_benchmarker func-
tion (gh-854).

• Fixed the docstring for the apply_clifford_to_pauli function (gh-836).

• Allowed the apply_clifford_to_pauli function to now work with the Identity as input (gh-849).

• Updated a stale link to the Rigetti Forest Slack workspace (gh-860).

• Fixed a notation typo in the documentation for noise (gh-861).

Special thanks to willzeng for all the contributions this release!

1.13.2 v2.5 (March 6, 2019)

Improvements and Changes:

• PyQuil’s Gate objects now expose .controlled(q) and .dagger() modifiers, which turn a gate respec-
tively into its controlled variant, conditional on the qubit q, or into its inverse.

• The operator estimation suite’s measure_observables method now exposes a readout_symmetrize
argument, which helps mitigate a machine’s fidelity asymmetry between recognizing a qubit in the ground state
versus the excited state.

• The MEASURE instruction in pyQuil now has a mandatory second argument. Previously, the second argument
could be omitted to induce “measurement for effect”, without storing the readout result to a classical register,
but users found this to be a common source of accidental error and a generally rude surprise. To ensure the
user really intends to measure only for effect, we now require that they supply an explicit None as the second
argument.

Bugfixes:

• Some stale tests have been brought into the modern era.

1.13.3 v2.4 (February 14, 2019)

Announcements:

• The Quil Compiler (quilc) and the Quantum Virtual Machine (QVM), which are part of the Forest SDK, have
been open sourced! In addition to downloading the binaries, you can now build these applications locally from
source, or run them via the Docker images rigetti/quilc and rigetti/qvm. These Docker images are now used as
the services in the GitLab CI build plan YAML (gh-792, gh-794, gh-795).
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Improvements and Changes:

• The WavefunctionSimulator now supports the use of parametric Quil programs, via the memory_map
parameter for its various methods (gh-787).

• Operator estimation data structures introduced in v2.2 have changed. Previously, ExperimentSettings
had two members: in_operator and out_operator. The out_operator is unchanged, but
in_operator has been renamed to in_state and its data type is now TensorProductState instead of
PauliTerm. It was always an abuse of notation to interpret pauli operators as defining initial states. Analogous
to the Pauli helper functions sI, sX, sY, and sZ, TensorProductState objects are constructed by multiply-
ing together terms generated by the helper functions plusX, minusX, plusY, minusY, plusZ, and minusZ. This
functionality enables process tomography and process DFE (gh-770).

• Operator estimation now offers a “greedy” method for grouping tomography-like experiments that share a nat-
ural tensor product basis (ntpb), as an alternative to the clique cover version (gh-754).

• The quilc endpoint for rewriting Quil parameter arithmetic has been changed from
resolve_gate_parameter_arithmetic to rewrite_arithmetic (gh-802).

• The difference between ProtoQuil and QPU-supported Quil is now better defined (gh-798).

Bugfixes:

• Resolved an issue with post-gate noise in the pyQVM (gh-801).

• A TypeError with a useful error message is now raised when a Program object is run on a QPU-backed
QuantumComputer, rather than a confusing AttributeError (gh-799).

1.13.4 v2.3 (January 28, 2019)

PyQuil 2.3 is the latest release of pyQuil, Rigetti’s toolkit for constructing and running quantum programs. A major
new feature is the release of a new suite of simulators:

• We’re proud to introduce the first iteration of a Python-based quantum virtual machine (QVM) called PyQVM.
This QVM is completely contained within pyQuil and does not need any external dependencies. Try using it
with get_qc("9q-square-pyqvm") or explore the pyquil.pyqvm.PyQVM object directly. Under-the-
hood, there are three quantum simulator backends:

– ReferenceWavefunctionSimulator uses standard matrix-vector multiplication to evolve a stat-
evector. This includes a suite of tools in pyquil.unitary_tools for dealing with unitary matrices.

– NumpyWavefunctionSimulator uses numpy’s tensordot functionality to efficiently evolve a stat-
evector. For most simulations, performance is quite good.

– ReferenceDensitySimulator uses matrix-matrix multiplication to evolve a density matrix.

• Matrix representations of Quil standard gates are included in pyquil.gate_matrices (gh-552).

• The density simulator has extremely limited support for Kraus-operator based noise models. Let us know if
you’re interested in contributing more robust noise-model support.

• This functionality should be considered experimental and may undergo minor API changes.

Important changes to note:

• Quil math functions (like COS, SIN, . . . ) used to be ambiguous with respect to case sensitivity. They are now
case-sensitive and should be uppercase (gh-774).

• In the next release of pyQuil, communication with quilc will happen exclusively via the rpcq proto-
col. LocalQVMCompiler and LocalBenchmarkConnection will be removed in favor of a unified
QVMCompiler and BenchmarkConnection. This change should be transparent if you use get_qc and
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get_benchmarker, respectively. In anticipation of this change we recommend that you upgrade your version
of quilc to 1.3, released Jan 30, 2019 (gh-730).

• When using a paramaterized gate, the QPU control electronics only allowed multiplying parameters by powers
of two. If you only ever multiply a parameter by the same constant, this isn’t too much of a problem because
you can fold the multiplicative constant into the definition of the parameter. However, if you are multiplying
the same variable (e.g. gamma in QAOA) by different constants (e.g. weighted maxcut edge weights) it doesn’t
work. PyQuil will now transparently handle the latter case by expanding to a vector of parameters with the
constants folded in, allowing you to multiply variables by whatever you want (gh-707).

As always, this release contains bug fixes and improvements:

• The CZ gate fidelity metric available in the Specs object now has its associated standard error, which is accessible
from the method Specs.fCZ_std_errs (gh-751).

• Operator estimation code now correctly handles identity terms with coefficients. Previously, it would always
estimate these terms as 1.0 (gh-758).

• Operator estimation results include the total number of counts (shots) taken.

• Operator estimation JSON serialization uses utf-8. Please let us know if this causes problems (gh-769).

• The example quantum die program now can roll dice that are not powers of two (gh-749).

• The teleportation and Meyer penny game examples had a syntax error (gh-778, gh-772).

• When running on the QPU, you could get into trouble if the QPU name passed to get_qc did not match the
lattice you booked. This is now validated (gh-771).

We extend thanks to community member estamm12 for their contribution to this release.

1.13.5 v2.2 (January 4, 2019)

PyQuil 2.2 is the latest release of pyQuil, Rigetti’s toolkit for constructing and running quantum programs. Bug fixes
and improvements include:

• pauli.is_zero and paulis.is_identity would sometimes return erroneous answers (gh-710).

• Parameter expressions involving addition and subtraction are now converted to Quil with spaces around the
operators, e.g. theta + 2 instead of theta+2. This disambiguates subtracting two parameters, e.g. alpha
- beta is not one variable named alpha-beta (gh-743).

• T1 is accounted for in T2 noise models (gh-745).

• Documentation improvements (gh-723, gh-719, gh-720, gh-728, gh-732, gh-742).

• Support for PNG generation of circuit diagrams via LaTeX (gh-745).

• We’ve started transitioning to using Gitlab as our continuous integration provider for pyQuil (gh-741, gh-752).

This release includes a new module for facilitating the estimation of quantum observables/operators (gh-682). First-
class support for estimating observables should make it easier to express near-term algorithms. This release includes:

• data structures for expressing tomography-like experiments and their results

• grouping of experiment settings that can be simultaneously estimated

• functionality to executing a tomography-like experiment on a quantum computer

Please look forward to more features and polish in future releases. Don’t hesitate to submit feedback or suggestions
as GitHub issues.

We extend thanks to community member petterwittek for their contribution to this release.
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Bugfix release 2.2.1 was released January 11 to maintain compatibility with the latest version of the quilc compiler
(gh-759).

1.13.6 v2.1 (November 30, 2018)

PyQuil 2.1 is an incremental release of pyQuil, Rigetti’s toolkit for constructing and running quantum programs.
Changes include:

• Major documentation improvements.

• QuantumComputer.run() accepts an optional memory_map parameter to facilitate running parametric
executables (gh-657).

• QuantumComputer.reset() will reset the state of a QAM to recover from an error condition (gh-703).

• Bug fixes (gh-674, gh-696).

• Quil parser improvements (gh-689, gh-685).

• Optional interleaver argument when generating RB sequences (gh-673).

• Our GitHub organization name has changed from rigetticomputing to rigetti (gh-713).

1.13.7 v2.0 (November 1, 2018)

PyQuil 2.0 is a major release of pyQuil, Rigetti’s toolkit for constructing and running quantum programs. This release
contains many major changes including:

1. The introduction of Quantum Cloud Services. Access Rigetti’s QPUs from co-located classical compute re-
sources for minimal latency. The web API for running QVM and QPU jobs has been deprecated and cannot be
accessed with pyQuil 2.0

2. Advances in classical control systems and compilation allowing the pre-compilation of parametric binary exe-
cutables for rapid hybrid algorithm iteration.

3. Changes to Quil—our quantum instruction language—to provide easier ways of interacting with classical mem-
ory.

The new QCS access model and features will allow you to execute hybrid quantum algorithms several orders of
magnitude (!) faster than the previous web endpoint. However, to fully exploit these speed increases you must update
your programs to use the latest pyQuil features and APIs. Please read New in Forest 2 - Other for a comprehensive
migration guide.

An incomplete list of significant changes:

• Python 2 is no longer supported. Please use Python 3.6+

• Parametric gates are now normal functions. You can no longer write RX(pi/2)(0) to get a Quil RX(pi/2)
0 instruction. Just use RX(pi/2, 0).

• Gates support keyword arguments, so you can write RX(angle=pi/2, qubit=0).

• All async methods have been removed from QVMConnection and QVMConnection is deprecated.
QPUConnection has been removed in accordance with the QCS access model. Use pyquil.get_qc() as
the primary means of interacting with the QVM or QPU.

• WavefunctionSimulator allows unfettered access to wavefunction properties and routines. These meth-
ods and properties previously lived on QVMConnection and have been deprecated there.

• Classical memory in Quil must be declared with a name and type. Please read New in Forest 2 - Other for more.
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• Compilation has changed. There are now different Compiler objects that target either the QPU or QVM. You
must explicitly compile your programs to run on a QPU or a realistic QVM.

Version 2.0.1 was released on November 9, 2018 and includes documentation changes only. This release is only
available as a git tag. We have not pushed a new package to PyPI.

1.13.8 v1.9 (June 6, 2018)

We’re happy to announce the release of pyQuil 1.9. PyQuil is Rigetti’s toolkit for constructing and running quan-
tum programs. This release is the latest in our series of regular releases, and it’s filled with convenience features,
enhancements, bug fixes, and documentation improvements.

Special thanks to community members sethuiyer, vtomole, rht, akarazeev, ejdanderson, markf94, playadust, and
kadora626 for contributing to this release!

Qubit placeholders

One of the focuses of this release is a re-worked concept of “Qubit Placeholders”. These are logical qubits that can
be used to construct programs. Now, a program containing qubit placeholders must be “addressed” prior to running
on a QPU or QVM. The addressing stage involves mapping each qubit placeholder to a physical qubit (represented as
an integer). For example, if you have a 3 qubit circuit that you want to run on different sections of the Agave chip,
you now can prepare one Program and address it to many different subgraphs of the chip topology. Check out the
QubitPlaceholder example notebook for more.

To support this idea, we’ve refactored parts of Pyquil to remove the assumption that qubits can be “sorted”. While
true for integer qubit labels, this probably isn’t true in general. A notable change can be found in the construction of a
PauliSum: now terms will stay in the order they were constructed.

• PauliTerm now remembers the order of its operations. sX(1)*sZ(2) will compile to different Quil
code than sZ(2)*sX(1), although the terms will still be equal according to the __eq__ method. During
PauliSum combination of like terms, a warning will be emitted if two terms are combined that have different
orders of operation.

• PauliTerm.id() takes an optional argument sort_ops which defaults to True for backwards compatibil-
ity. However, this function should not be used for comparing term-type like it has been used previously. Use
PauliTerm.operations_as_set() instead. In the future, sort_ops will default to False and will
eventually be removed.

• Program.alloc() has been deprecated. Please instantiate QubitPlaceholder() directly or request a
“register” (list) of n placeholders by using the class constructor QubitPlaceholder.register(n)().

• Programs must contain either (1) all instantiated qubits with integer indexes or (2) all placeholder qubits of type
QubitPlaceholder. We have found that most users use (1) but (2) will become useful with larger and more
diverse devices.

• Programs that contain qubit placeholders must be explicitly addressed prior to execution. Previously, qubits
would be assigned “under the hood” to integers 0. . . N. Now, you must use address_qubits()which returns
a new program with all qubits indexed depending on the qubit_mapping argument. The original program is
unaffected and can be “readdressed” multiple times.

• PauliTerm can now accept QubitPlaceholder in addition to integers.

• QubitPlaceholder is no longer a subclass of Qubit. LabelPlaceholder is no longer a subclass of
Label.

• QuilAtom subclasses’ hash functions have changed.

94 Chapter 1. Contents



pyQuil Documentation, Release 2.6.0

Randomized benchmarking sequence generation

Pyquil now includes support for performing a simple benchmarking routine - randomized benchmarking. There is
a new method in the CompilerConnection that will return sequences of pyquil programs, corresponding to el-
ements of the Clifford group. These programs are uniformly randomly sampled, and have the property that they
compose to the identity. When concatenated and run as one program, these programs can be used in a procedure called
randomized benchmarking to gain insight about the fidelity of operations on a QPU.

In addition, the CompilerConnection has another new method, apply_clifford_to_pauli() which con-
jugates PauliTerms by Program that are composed of Clifford gates. That is to say, given a circuit C, that contains
only gates corresponding to elements of the Clifford group, and a tensor product of elements P, from the Pauli group,
this method will compute $PCP^{dagger}$. Such a procedure can be used in various ways. An example is predicting
the effect a Clifford circuit will have on an input state modeled as a density matrix, which can be written as a sum of
Pauli matrices.

Ease of Use

This release includes some quality-of-life improvements such as the ability to initialize programs with generator ex-
pressions, sensible defaults for Program.measure_all(), and sensible defaults for classical_addresses
in run() methods.

• Program can be initiated with a generator expression.

• Program.measure_all() (with no arguments) will measure all qubits in a program.

• classical_addresses is now optional in QVM and QPU run() methods. By default, any classical
addresses targeted by MEASURE will be returned.

• QVMConnection.pauli_expectation() accepts PauliSum as arguments. This offers a more sensible
API compared to QVMConnection.expectation().

• pyQuil will now retry jobs every 10 seconds if the QPU is re-tuning.

• CompilerConnection.compile() now takes an optional argument isa that allows per-compilation
specification of the target ISA.

• An empty program will trigger an exception if you try to run it.

Supported versions of Python

We strongly support using Python 3 with Pyquil. Although this release works with Python 2, we are dropping official
support for this legacy language and moving to community support for Python 2. The next major release of Pyquil
will introduce Python 3.5+ only features and will no longer work without modification for Python 2.

Bug fixes

• shift_quantum_gates has been removed. Users who relied on this functionality should use
QubitPlaceholder and address_qubits() to achieve the same result. Users should also double-
check data resulting from use of this function as there were several edge cases which would cause the shift to be
applied incorrectly resulting in badly-addressed qubits.

• Slightly perturbed angles when performing RX gates under a Kraus noise model could result in incorrect behav-
ior.

• The quantum die example returned incorrect values when n = 2^m.

1.13. Changelog 95



pyQuil Documentation, Release 2.6.0

1.14 Introduction to Quantum Computing

With every breakthrough in science there is the potential for new technology. For over twenty years, researchers have
done inspiring work in quantum mechanics, transforming it from a theory for understanding nature into a fundamen-
tally new way to engineer computing technology. This field, quantum computing, is beautifully interdisciplinary, and
impactful in two major ways:

1. It reorients the relationship between physics and computer science. Physics does not just place restrictions on
what computers we can design, it also grants new power and inspiration.

2. It can simulate nature at its most fundamental level, allowing us to solve deep problems in quantum chemistry,
materials discovery, and more.

Quantum computing has come a long way, and in the next few years there will be significant breakthroughs in the
field. To get here, however, we have needed to change our intuition for computation in many ways. As with other
paradigms — such as object-oriented programming, functional programming, distributed programming, or any of the
other marvelous ways of thinking that have been expressed in code over the years — even the basic tenants of quantum
computing opens up vast new potential for computation.

However, unlike other paradigms, quantum computing goes further. It requires an extension of classical probability
theory. This extension, and the core of quantum computing, can be formulated in terms of linear algebra. Therefore,
we begin our investigation into quantum computing with linear algebra and probability.

1.14.1 From Bit to Qubit

Probabilistic Bits as Vector Spaces

From an operational perspective, a bit is described by the results of measurements performed on it. Let the possible
results of measuring a bit (0 or 1) be represented by orthonormal basis vectors \(\vec{0}\) and \(\vec{1}\). We will
call these vectors outcomes. These outcomes span a two-dimensional vector space that represents a probabilistic bit.
A probabilistic bit can be represented as a vector

�⃗� = 𝑎 0⃗ + 𝑏 1⃗,

where \(a\) represents the probability of the bit being 0 and \(b\) represents the probability of the bit being 1. This
clearly also requires that \(a+b=1\). In this picture the system (the probabilistic bit) is a two-dimensional real vector
space and a state of a system is a particular vector in that vector space.

import numpy as np
import matplotlib.pyplot as plt

outcome_0 = np.array([1.0, 0.0])
outcome_1 = np.array([0.0, 1.0])
a = 0.75
b = 0.25

prob_bit = a * outcome_0 + b * outcome_1

X, Y = prob_bit
plt.figure()
ax = plt.gca()
ax.quiver(X, Y, angles='xy', scale_units='xy', scale=1)
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])

(continues on next page)
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(continued from previous page)

plt.draw()
plt.show()

Given some state vector, like the one plotted above, we can find the probabilities associated with each outcome by
projecting the vector onto the basis outcomes. This gives us the following rule:

Pr(0) = �⃗�𝑇 .⃗0 = 𝑎

Pr(1) = �⃗�𝑇 .⃗1 = 𝑏,

where Pr(0) and Pr(1) are the probabilities of the 0 and 1 outcomes respectively.

Dirac Notation

Physicists have introduced a convenient notation for the vector transposes and dot products we used in the previous
example. This notation, called Dirac notation in honor of the great theoretical physicist Paul Dirac, allows us to define

�⃗� = |𝑣⟩
�⃗�𝑇 = ⟨𝑣|

�⃗�𝑇 · �⃗� = ⟨𝑢|𝑣⟩

Thus, we can rewrite our “measurement rule” in this notation as

𝑃𝑟(0) = ⟨𝑣|0⟩ = 𝑎

𝑃𝑟(1) = ⟨𝑣|1⟩ = 𝑏

We will use this notation throughout the rest of this introduction.

Multiple Probabilistic Bits

This vector space interpretation of a single probabilistic bit can be straightforwardly extended to multiple bits. Let us
take two coins as an example (labelled 0 and 1 instead of H and T since we are programmers). Their states can be
represented as

|𝑢⟩ =
1

2
| 0𝑢⟩ +

1

2
| 1𝑢⟩

| 𝑣⟩ =
1

2
| 0𝑣⟩ +

1

2
| 1𝑣⟩,
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where \(1_u\) represents the outcome 1 on coin \(u\). The combined system of the two coins has four possible
outcomes \(\{ 0_u0_v,\;0_u1_v,\;1_u0_v,\;1_u1_v \}\) that are the basis states of a larger four-dimensional vector
space. The rule for constructing a combined state is to take the tensor product of individual states, e.g.

|𝑢⟩ ⊗ | 𝑣⟩ =
1

4
| 0𝑢0𝑣⟩ +

1

4
| 0𝑢1𝑣⟩ +

1

4
| 1𝑢0𝑣⟩ +

1

4
| 1𝑢1𝑣⟩.

Then, the combined space is simply the space spanned by the tensor products of all pairs of basis vectors of the two
smaller spaces.

Similarly, the combined state for \(n\) such probabilistic bits is a vector of size \(2^n\) and is given by
\(\bigotimes_{i=0}^{n-1}|\,v_i\rangle\). We will talk more about these larger spaces in the quantum case, but it is
important to note that not all composite states can be written as tensor products of sub-states (e.g. consider the state
\(\frac{1}{2}|\,0_u0_v\rangle + \frac{1}{2}|\,1_u1_v\rangle\)). The most general composite state of \(n\) probabilistic
bits can be written as \(\sum_{j=0}^{2^n - 1} a_{j} (\bigotimes_{i=0}^{n-1}|\,b_{ij}\rangle\)) where each \(b_{ij}
\in \{0, 1\}\) and \(a_j \in \mathbb{R}\), i.e. as a linear combination (with real coefficients) of tensor products of basis
states. Note that this still gives us \(2^n\) possible states.

Qubits

Quantum mechanics rewrites these rules to some extent. A quantum bit, called a qubit, is the quantum analog of a
bit in that it has two outcomes when it is measured. Similar to the previous section, a qubit can also be represented
in a vector space, but with complex coefficients instead of real ones. A qubit system is a two-dimensional complex
vector space, and the state of a qubit is a complex vector in that space. Again we will define a basis of outcomes
\(\{|\,0\rangle, |\,1\rangle\}\) and let a generic qubit state be written as

𝛼| 0⟩ + 𝛽| 1⟩.

Since these coefficients can be imaginary, they cannot be simply interpreted as probabilities of their associated out-
comes. Instead we rewrite the rule for outcomes in the following manner:

Pr(0) = |⟨𝑣 | 0⟩|2 = |𝛼|2

Pr(1) = |⟨𝑣 | 1⟩|2 = |𝛽|2,

and as long as \(|\alpha|^2 + |\beta|^2 = 1\) we are able to recover acceptable probabilities for outcomes based on our
new complex vector.

This switch to complex vectors means that rather than representing a state vector in a plane, we instead represent the
vector on a sphere (called the Bloch sphere in quantum mechanics literature). From this perspective the quantum state
corresponding to an outcome of 0 is represented by:
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Notice that the two axes in the horizontal plane have been labeled \(x\) and \(y\), implying that \(z\) is the vertical
axis (not labeled). Physicists use the convention that a qubit’s \(\{|\,0\rangle, |\,1\rangle\}\) states are the positive and
negative unit vectors along the z axis, respectively. These axes will be useful later in this document.

Multiple qubits are represented in precisely the same way, by taking linear combinations (with complex coefficients,
now) of tensor products of basis states. Thus \(n\) qubits have \(2^n\) possible states.

An Important Distinction

The probabilistic states described above represent ignorance of an underlying state, like 0 or 1 for probabilistic bits.
This is not true for quantum states. The nature of quantum states is a deep topic with no full scientific consensus.
However, no-go theorems like Bell’s Theorem have ruled out the option of local hidden variable theories for quantum
mechanics. Effectively, these say that quantum states can’t be interpreted as purely representing ignorance of an
underlying local objective state. In practice this means that a pure quantum state simply is the complex vector described
in the last section, and we consider it just as “real” as a heads-up coin. This distinction between quantum and classical
states is foundational for understanding quantum computing.

Some Code

Let us take a look at some code in pyQuil to see how these quantum states play out. We will dive deeper into quantum
operations and pyQuil in the following sections. Note that in order to run these examples you will need to install
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pyQuil and download the QVM and Compiler. Each of the code snippets below will be immediately followed by its
output.

# Imports for pyQuil (ignore for now)
import numpy as np
from pyquil.quil import Program
from pyquil.api import WavefunctionSimulator

# create a WavefunctionSimulator object
wavefunction_simulator = WavefunctionSimulator()

# pyQuil is based around operations (or gates) so we will start with the most
# basic one: the identity operation, called I. I takes one argument, the index
# of the qubit that it should be applied to.
from pyquil.gates import I

# Make a quantum program that allocates one qubit (qubit #0) and does nothing to it
p = Program(I(0))

# Quantum states are called wavefunctions for historical reasons.
# We can run this basic program on our connection to the simulator.
# This call will return the state of our qubits after we run program p.
# This api call returns a tuple, but we'll ignore the second value for now.
wavefunction = wavefunction_simulator.wavefunction(p)

# wavefunction is a Wavefunction object that stores a quantum state as a list of
→˓amplitudes
alpha, beta = wavefunction

print("Our qubit is in the state alpha={} and beta={}".format(alpha, beta))
print("The probability of measuring the qubit in outcome 0 is {}".
→˓format(abs(alpha)**2))
print("The probability of measuring the qubit in outcome 1 is {}".
→˓format(abs(beta)**2))

Our qubit is in the state alpha=(1+0j) and beta=0j
The probability of measuring the qubit in outcome 0 is 1.0
The probability of measuring the qubit in outcome 1 is 0.0

Applying an operation to our qubit affects the probability of each outcome.

# We can import the qubit "flip" operation, called X, and see what it does.
# We will learn more about this operation in the next section.
from pyquil.gates import X

p = Program(X(0))

wavefunc = wavefunction_simulator.wavefunction(p)
alpha, beta = wavefunc

print("Our qubit is in the state alpha={} and beta={}".format(alpha, beta))
print("The probability of measuring the qubit in outcome 0 is {}".
→˓format(abs(alpha)**2))
print("The probability of measuring the qubit in outcome 1 is {}".
→˓format(abs(beta)**2))

100 Chapter 1. Contents

start.html
start.html


pyQuil Documentation, Release 2.6.0

Our qubit is in the state alpha=0j and beta=(1+0j)
The probability of measuring the qubit in outcome 0 is 0.0
The probability of measuring the qubit in outcome 1 is 1.0

In this case we have flipped the probability of outcome 0 into the probability of outcome 1 for our qubit. We can also
investigate what happens to the state of multiple qubits. We’d expect the state of multiple qubits to grow exponentially
in size, as their vectors are tensored together.

# Multiple qubits also produce the expected scaling of the state.
p = Program(I(0), I(1))
wavefunction = wavefunction_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

p = Program(I(0), I(1), I(2), I(3))
wavefunction = wavefunction_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

p = Program()
for x in range(10):

p += I(x)
wavefunction = wavefunction_simulator.wavefunction(p)
print("The quantum state is of dimension:", len(wavefunction.amplitudes))

The quantum state is of dimension: 4
The quantum state is of dimension: 16
The quantum state is of dimension: 1024

Let’s look at the actual value for the state of two qubits combined. The resulting dictionary of this method contains
outcomes as keys and the probabilities of those outcomes as values.

# wavefunction(Program) returns a coefficient array that corresponds to outcomes in
→˓the following order
wavefunction = wavefunction_simulator.wavefunction(Program(I(0), I(1)))
print(wavefunction.get_outcome_probs())

{'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}

1.14.2 Qubit Operations

In the previous section we introduced our first two operations: the I (or Identity) operation and the X (or NOT)
operation. In this section we will get into some more details on what these operations are.

Quantum states are complex vectors on the Bloch sphere, and quantum operations are matrices with two properties:

1. They are reversible.

2. When applied to a state vector on the Bloch sphere, the resulting vector is also on the Bloch sphere.

Matrices that satisfy these two properties are called unitary matrices. Such matrices have the characteristic property
that their complex conjugate transpose is equal to their inverse, a property directly linked to the requirement that the
probabilities of measuring qubits in any of the allowed states must sum to 1. Applying an operation to a quantum state
is the same as multiplying a vector by one of these matrices. Such an operation is called a gate.

Since individual qubits are two-dimensional vectors, operations on individual qubits are 2x2 matrices. The identity
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matrix leaves the state vector unchanged:

𝐼 =

(︂
1 0
0 1

)︂
so the program that applies this operation to the zero state is just

𝐼 | 0⟩ =

(︂
1 0
0 1

)︂(︂
1
0

)︂
=

(︂
1
0

)︂
= | 0⟩

p = Program(I(0))
print(wavefunction_simulator.wavefunction(p))

(1+0j)|0>

Pauli Operators

Let’s revisit the X gate introduced above. It is one of three important single-qubit gates, called the Pauli operators:

𝑋 =

(︂
0 1
1 0

)︂
𝑌 =

(︂
0 −𝑖
𝑖 0

)︂
𝑍 =

(︂
1 0
0 −1

)︂

from pyquil.gates import X, Y, Z

p = Program(X(0))
wavefunction = wavefunction_simulator.wavefunction(p)
print("X|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This looks like a bit flip.\n")

p = Program(Y(0))
wavefunction = wavefunction_simulator.wavefunction(p)
print("Y|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This also looks like a bit flip.\n")

p = Program(Z(0))
wavefunction = wavefunction_simulator.wavefunction(p)
print("Z|0> = ", wavefunction)
print("The outcome probabilities are", wavefunction.get_outcome_probs())
print("This state looks unchanged.")

X|0> = (1+0j)|1>
The outcome probabilities are {'0': 0.0, '1': 1.0}
This looks like a bit flip.

Y|0> = 1j|1>
The outcome probabilities are {'0': 0.0, '1': 1.0}
This also looks like a bit flip.

Z|0> = (1+0j)|0>
The outcome probabilities are {'0': 1.0, '1': 0.0}
This state looks unchanged.
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The Pauli matrices have a visual interpretation: they perform 180-degree rotations of qubit state vectors on the Bloch
sphere. They operate about their respective axes as shown in the Bloch sphere depicted above. For example, the X
gate performs a 180-degree rotation about the \(x\) axis. This explains the results of our code above: for a state vector
initially in the +\(z\) direction, both X and Y gates will rotate it to -\(z\), and the Z gate will leave it unchanged.

However, notice that while the X and Y gates produce the same outcome probabilities, they actually produce different
states. These states are not distinguished if they are measured immediately, but they produce different results in larger
programs.

Quantum programs are built by applying successive gate operations:

# Composing qubit operations is the same as multiplying matrices sequentially
p = Program(X(0), Y(0), Z(0))
wavefunction = wavefunction_simulator.wavefunction(p)

print("ZYX|0> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

ZYX|0> = [ 0.-1.j 0.+0.j]
With outcome probabilities
{'0': 1.0, '1': 0.0}

Multi-Qubit Operations

Operations can also be applied to composite states of multiple qubits. One common example is the controlled-NOT or
CNOT gate that works on two qubits. Its matrix form is:

𝐶𝑁𝑂𝑇 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
Let’s take a look at how we could use a CNOT gate in pyQuil.

from pyquil.gates import CNOT

p = Program(CNOT(0, 1))
wavefunction = wavefunction_simulator.wavefunction(p)
print("CNOT|00> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs(), "\n")

p = Program(X(0), CNOT(0, 1))
wavefunction = wavefunction_simulator.wavefunction(p)
print("CNOT|01> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs(), "\n")

p = Program(X(1), CNOT(0, 1))
wavefunction = wavefunction_simulator.wavefunction(p)
print("CNOT|10> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs(), "\n")

p = Program(X(0), X(1), CNOT(0, 1))
wavefunction = wavefunction_simulator.wavefunction(p)
print("CNOT|11> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs(), "\n")
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CNOT|00> = (1+0j)|00>
With outcome probabilities
{'00': 1.0, '01': 0.0, '10': 0.0, '11': 0.0}

CNOT|01> = (1+0j)|11>
With outcome probabilities
{'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}

CNOT|10> = (1+0j)|10>
With outcome probabilities
{'00': 0.0, '01': 0.0, '10': 1.0, '11': 0.0}

CNOT|11> = (1+0j)|01>
With outcome probabilities
{'00': 0.0, '01': 1.0, '10': 0.0, '11': 0.0}

The CNOT gate does what its name implies: the state of the second qubit is flipped (negated) if and only if the state of
the first qubit is 1 (true).

Another two-qubit gate example is the SWAP gate, which swaps the \( |01\rangle \) and \(|10\rangle \) states:

𝑆𝑊𝐴𝑃 =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠
from pyquil.gates import SWAP

p = Program(X(0), SWAP(0,1))
wavefunction = wavefunction_simulator.wavefunction(p)

print("SWAP|01> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

SWAP|01> = (1+0j)|10>
With outcome probabilities
{'00': 0.0, '01': 0.0, '10': 1.0, '11': 0.0}

In summary, quantum computing operations are composed of a series of complex matrices applied to complex vectors.
These matrices must be unitary (meaning that their complex conjugate transpose is equal to their inverse) because the
overall probability of all outcomes must always sum to one.

1.14.3 The Quantum Abstract Machine

We now have enough background to introduce the programming model that underlies Quil. This is a hybrid quantum-
classical model in which \(N\) qubits interact with \(M\) classical bits:
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These qubits and classical bits come with a defined gate set, e.g. which gate operations can be applied to which qubits.
Different kinds of quantum computing hardware place different limitations on what gates can be applied, and the fixed
gate set represents these limitations.

Full details on the Quantum Abstract Machine and Quil can be found in the Quil whitepaper.

The next section on measurements will describe the interaction between the classical and quantum parts of a Quantum
Abstract Machine (QAM).

Qubit Measurements

Measurements have two effects:

1. They project the state vector onto one of the basic outcomes

2. (optional) They store the outcome of the measurement in a classical bit.

Here’s a simple example:

# Create a program that stores the outcome of measuring qubit #0 into classical
→˓register [0]
p = Program()
classical_register = p.declare('ro', 'BIT', 1)
p += Program(I(0)).measure(0, classical_register[0])
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Up until this point we have used the quantum simulator to cheat a little bit — we have actually looked at the wave-
function that comes back. However, on real quantum hardware, we are unable to directly look at the wavefunction.
Instead we only have access to the classical bits that are affected by measurements. This functionality is emulated by
QuantumComputer.run(). Note that the run command is to be applied on the compiled version of the program.

from pyquil import get_qc

qc = get_qc('9q-square-qvm')
print (qc.run(qc.compile(p)))

[[0]]

We see that the classical register reports a value of zero. However, if we had flipped the qubit before measurement
then we obtain:

p = Program()
classical_register = p.declare('ro', 'BIT', 1)
p += Program(X(0)) # Flip the qubit
p.measure(0, classical_register[0]) # Measure the qubit

print (qc.run(qc.compile(p)))

[[1]]

These measurements are deterministic, e.g. if we make them multiple times then we always get the same outcome:

p = Program()
classical_register = p.declare('ro', 'BIT', 1)
p += Program(X(0)) # Flip the qubit
p.measure(0, classical_register[0]) # Measure the qubit

trials = 10
p.wrap_in_numshots_loop(shots=trials)

print (qc.run(qc.compile(p)))

[[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]

Classical/Quantum Interaction

However this is not the case in general — measurements can affect the quantum state as well. In fact, measurements
act like projections onto the outcome basis states. To show how this works, we first introduce a new single-qubit gate,
the Hadamard gate. The matrix form of the Hadamard gate is:

𝐻 =
1√
2

(︂
1 1
1 −1

)︂
The following pyQuil code shows how we can use the Hadamard gate:

from pyquil.gates import H

# The Hadamard produces what is called a superposition state
coin_program = Program(H(0))

(continues on next page)
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(continued from previous page)

wavefunction = wavefunction_simulator.wavefunction(coin_program)

print("H|0> = ", wavefunction)
print("With outcome probabilities\n", wavefunction.get_outcome_probs())

H|0> = (0.7071067812+0j)|0> + (0.7071067812+0j)|1>
With outcome probabilities
{'0': 0.49999999999999989, '1': 0.49999999999999989}

A qubit in this state will be measured half of the time in the \( |0\rangle \) state, and half of the time in the \( |1\rangle
\) state. In a sense, this qubit truly is a random variable representing a coin. In fact, there are many wavefunctions that
will give this same operational outcome. There is a continuous family of states of the form

1√
2

(︀
| 0⟩ + 𝑒𝑖𝜃| 1⟩

)︀
that represent the outcomes of an unbiased coin. Being able to work with all of these different new states is part of
what gives quantum computing extra power over regular bits.

p = Program()
ro = p.declare('ro', 'BIT', 1)

p += Program(H(0)).measure(0, ro[0])

# Measure qubit #0 a number of times
p.wrap_in_numshots_loop(shots=10)

# We see probabilistic results of about half 1's and half 0's
print (qc.run(qc.compile(p)))

[[0], [1], [1], [0], [1], [0], [0], [1], [0], [0]]

pyQuil allows us to look at the wavefunction after a measurement as well:

coin_program = Program(H(0))
print ("Before measurement: H|0> = ", wavefunction_simulator.wavefunction(coin_
→˓program), "\n")

ro = coin_program.declare('ro', 'BIT', 1)
coin_program.measure(0, ro[0])
for _ in range(5):

print ("After measurement: ", wavefunction_simulator.wavefunction(coin_program))

Before measurement: H|0> = (0.7071067812+0j)|0> + (0.7071067812+0j)|1>

After measurement: (1+0j)|1>
After measurement: (1+0j)|1>
After measurement: (1+0j)|1>
After measurement: (1+0j)|1>
After measurement: (1+0j)|1>

We can clearly see that measurement has an effect on the quantum state independent of what is stored classically. We
begin in a state that has a 50-50 probability of being \( |0\rangle \) or \( |1\rangle \). After measurement, the state
changes into being entirely in \( |0\rangle \) or entirely in \( |1\rangle \) according to which outcome was obtained.
This is the phenomenon referred to as the collapse of the wavefunction. Mathematically, the wavefunction is being
projected onto the vector of the obtained outcome and subsequently rescaled to unit norm.
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# This happens with bigger systems too, as can be seen with this program,
# which prepares something called a Bell state (a special kind of "entangled state")
bell_program = Program(H(0), CNOT(0, 1))
wavefunction = wavefunction_simulator.wavefunction(bell_program)
print("Before measurement: Bell state = ", wavefunction, "\n")

classical_regs = bell_program.declare('ro', 'BIT', 2)
bell_program.measure(0, classical_regs[0]).measure(1, classical_regs[1])

for _ in range(5):
wavefunction = wavefunction_simulator.wavefunction(bell_program)
print("After measurement: ", wavefunction.get_outcome_probs())

Before measurement: Bell state = (0.7071067812+0j)|00> + (0.7071067812+0j)|11>

After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}
After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}
After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}
After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}
After measurement: {'00': 0.0, '01': 0.0, '10': 0.0, '11': 1.0}

The above program prepares entanglement because, even though there are random outcomes, after every measurement
both qubits are in the same state. They are either both \( |0\rangle \) or both \( |1\rangle \). This special kind of
correlation is part of what makes quantum mechanics so unique and powerful.

Classical Control

There are also ways of introducing classical control of quantum programs. For example, we can use the state of
classical bits to determine what quantum operations to run.

true_branch = Program(X(7)) # if branch
false_branch = Program(I(7)) # else branch

# Branch on ro[1]
p = Program()
ro = p.declare('ro', 'BIT', 8)
p += Program(X(0)).measure(0, ro[1]).if_then(ro[1], true_branch, false_branch)

# Measure qubit #7 into ro[7]
p.measure(7, ro[7])

# Run and check register [7]
print (qc.run(qc.compile(p)))

[[1 1]]

The second [1] here means that qubit 7 was indeed flipped.
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Example: The Probabilistic Halting Problem

A fun example is to create a program that has an exponentially increasing chance of halting, but that may run forever!

p = Program()
ro = p.declare('ro', 'BIT', 1)
inside_loop = Program(H(0)).measure(0, ro[0])
p.inst(X(0)).while_do(ro[0], inside_loop)

(continues on next page)
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(continued from previous page)

qc = get_qc('9q-square-qvm')
print (qc.run(qc.compile(p)))

[[0]]
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1.14.4 Next Steps

We hope that you have enjoyed your whirlwind tour of quantum computing. You are now ready to check out the
Installation and Getting Started guide!

If you would like to learn more, Nielsen and Chuang’s Quantum Computation and Quantum Information is a particu-
larly excellent resource for newcomers to the field.

If you’re interested in learning about the software behind quantum computing, take a look at our blog posts on The
Quantum Software Challenge.

1.15 Program

class pyquil.quil.Program(*instructions)
A list of pyQuil instructions that comprise a quantum program.

>>> from pyquil import Program
>>> from pyquil.gates import *
>>> p = Program()
>>> p += H(0)
>>> p += CNOT(0, 1)

Attributes

instructions Fill in any placeholders and return a list of quil Ab-
stractInstructions.

defined_gates A list of defined gates on the program.
out() Serializes the Quil program to a string suitable for

submitting to the QVM or QPU.
get_qubits([indices]) Returns all of the qubit indices used in this program,

including gate applications and allocated qubits.
is_protoquil() Protoquil programs may only contain gates, Prag-

mas, and RESET.

1.15.1 Program.instructions

Program.instructions
Fill in any placeholders and return a list of quil AbstractInstructions.

1.15.2 Program.defined_gates

Program.defined_gates
A list of defined gates on the program.

1.15.3 Program.out

Program.out()
Serializes the Quil program to a string suitable for submitting to the QVM or QPU.
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1.15.4 Program.get_qubits

Program.get_qubits(indices=True)
Returns all of the qubit indices used in this program, including gate applications and allocated qubits. e.g.

>>> p = Program()
>>> p.inst(("H", 1))
>>> p.get_qubits()
{1}
>>> q = p.alloc()
>>> p.inst(H(q))
>>> len(p.get_qubits())
2

Parameters indices – Return qubit indices as integers intead of the wrapping Qubit object

Returns A set of all the qubit indices used in this program

Return type set

1.15.5 Program.is_protoquil

Program.is_protoquil()
Protoquil programs may only contain gates, Pragmas, and RESET. It may not contain classical instructions
or jumps.

Returns True if the Program is Protoquil, False otherwise

Program Construction

__iadd__(other) Concatenate two programs together using +=, return-
ing a new one.

__add__(other) Concatenate two programs together, returning a new
one.

inst(*instructions) Mutates the Program object by appending new in-
structions.

gate(name, params, qubits) Add a gate to the program.
defgate(name, matrix[, parameters]) Define a new static gate.
define_noisy_gate(name, qubit_indices,
kraus_ops)

Overload a static ideal gate with a noisy one defined
in terms of a Kraus map.

define_noisy_readout(qubit, p00, p11) For this program define a classical bit flip readout
error channel parametrized by p00 and p11.

no_noise() Prevent a noisy gate definition from being applied to
the immediately following Gate instruction.

measure(qubit_index, classical_reg) Measures a qubit at qubit_index and puts the result
in classical_reg

reset([qubit_index]) Reset all qubits or just a specific qubit at qubit_index.
measure_all(*qubit_reg_pairs) Measures many qubits into their specified classical

bits, in the order they were entered.
alloc() Get a new qubit.
declare(name[, memory_type, memory_size,
. . . ])

DECLARE a quil variable

Continued on next page
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Table 2 – continued from previous page
wrap_in_numshots_loop(shots) Wraps a Quil program in a loop that re-runs the same

program many times.

1.15.6 Program.__iadd__

Program.__iadd__(other)
Concatenate two programs together using +=, returning a new one.

Parameters other (Program) – Another program or instruction to concatenate to this one.

Returns A newly concatenated program.

Return type Program

1.15.7 Program.__add__

Program.__add__(other)
Concatenate two programs together, returning a new one.

Parameters other (Program) – Another program or instruction to concatenate to this one.

Returns A newly concatenated program.

Return type Program

1.15.8 Program.inst

Program.inst(*instructions)
Mutates the Program object by appending new instructions.

This function accepts a number of different valid forms, e.g.

>>> p = Program()
>>> p.inst(H(0)) # A single instruction
>>> p.inst(H(0), H(1)) # Multiple instructions
>>> p.inst([H(0), H(1)]) # A list of instructions
>>> p.inst(H(i) for i in range(4)) # A generator of instructions
>>> p.inst(("H", 1)) # A tuple representing an instruction
>>> p.inst("H 0") # A string representing an instruction
>>> q = Program()
>>> p.inst(q) # Another program

It can also be chained:

>>> p = Program()
>>> p.inst(H(0)).inst(H(1))

Parameters instructions – A list of Instruction objects, e.g. Gates

Returns self for method chaining
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1.15.9 Program.gate

Program.gate(name, params, qubits)
Add a gate to the program.

Note: The matrix elements along each axis are ordered by bitstring. For two qubits the order is 00,
01, 10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the
bitstring 01 indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM
Overview.

Parameters

• name (string) – The name of the gate.

• params (list) – Parameters to send to the gate.

• qubits (list) – Qubits that the gate operates on.

Returns The Program instance

Return type Program

1.15.10 Program.defgate

Program.defgate(name, matrix, parameters=None)
Define a new static gate.

Note: The matrix elements along each axis are ordered by bitstring. For two qubits the order is 00,
01, 10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the
bitstring 01 indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM
Overview.

Parameters

• name (string) – The name of the gate.

• matrix (array-like) – List of lists or Numpy 2d array.

• parameters (list) – list of parameters that are used in this gate

Returns The Program instance.

Return type Program

1.15.11 Program.define_noisy_gate

Program.define_noisy_gate(name, qubit_indices, kraus_ops)
Overload a static ideal gate with a noisy one defined in terms of a Kraus map.

Note: The matrix elements along each axis are ordered by bitstring. For two qubits the order is 00,
01, 10, 11, where the the bits are ordered in reverse by the qubit index, i.e., for qubits 0 and 1 the
bitstring 01 indicates that qubit 0 is in the state 1. See also the related documentation section in the QVM
Overview.
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Parameters

• name (str) – The name of the gate.

• qubit_indices (tuple|list) – The qubits it acts on.

• kraus_ops (tuple|list) – The Kraus operators.

Returns The Program instance

Return type Program

1.15.12 Program.define_noisy_readout

Program.define_noisy_readout(qubit, p00, p11)
For this program define a classical bit flip readout error channel parametrized by p00 and p11. This
models the effect of thermal noise that corrupts the readout signal after it has interrogated the qubit.

Parameters

• qubit (int|QubitPlaceholder) – The qubit with noisy readout.

• p00 (float) – The probability of obtaining the measurement result 0 given that the qubit
is in state 0.

• p11 (float) – The probability of obtaining the measurement result 1 given that the qubit
is in state 1.

Returns The Program with an appended READOUT-POVM Pragma.

Return type Program

1.15.13 Program.no_noise

Program.no_noise()
Prevent a noisy gate definition from being applied to the immediately following Gate instruction.

Returns Program

1.15.14 Program.measure

Program.measure(qubit_index, classical_reg)
Measures a qubit at qubit_index and puts the result in classical_reg

Parameters

• qubit_index (int) – The address of the qubit to measure.

• classical_reg (int) – The address of the classical bit to store the result. Set to None
to measure for effect (discard result).

Returns The Quil Program with the appropriate measure instruction appended, e.g. MEASURE
0 [1]

Return type Program
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1.15.15 Program.reset

Program.reset(qubit_index=None)
Reset all qubits or just a specific qubit at qubit_index.

Parameters qubit_index (Optional[int]) – The address of the qubit to reset. If None,
reset all qubits.

Returns The Quil Program with the appropriate reset instruction appended, e.g. RESET 0

Return type Program

1.15.16 Program.measure_all

Program.measure_all(*qubit_reg_pairs)
Measures many qubits into their specified classical bits, in the order they were entered. If no qubit/register
pairs are provided, measure all qubits present in the program into classical addresses of the same index.

Parameters qubit_reg_pairs (Tuple) – Tuples of qubit indices paired with classical bits.

Returns The Quil Program with the appropriate measure instructions appended, e.g.

Return type Program

1.15.17 Program.alloc

Program.alloc()
Get a new qubit.

Returns A qubit.

Return type Qubit

1.15.18 Program.declare

Program.declare(name, memory_type=’BIT’, memory_size=1, shared_region=None, off-
sets=None)

DECLARE a quil variable

This adds the declaration to the current program and returns a MemoryReference to the base (offset = 0)
of the declared memory.

Note: This function returns a MemoryReference and cannot be chained like some of the other Program
methods. Consider using inst(DECLARE(...)) if you would like to chain methods, but please be
aware that you must create your own MemoryReferences later on.

Parameters

• name – Name of the declared variable

• memory_type – Type of the declared memory: ‘BIT’, ‘REAL’, ‘OCTET’ or ‘INTE-
GER’

• memory_size – Number of array elements in the declared memory.
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• shared_region – You can declare a variable that shares its underlying memory with
another region. This allows aliasing. For example, you can interpret an array of measured
bits as an integer.

• offsets – If you are using shared_region, this allows you to share only a part
of the parent region. The offset is given by an array type and the number of elements
of that type. For example, DECLARE target-bit BIT SHARING real-region
OFFSET 1 REAL 4 BIT will let you use target-bit to poke into the fourth bit of the
second real from the leading edge of real-region.

Returns a MemoryReference to the start of the declared memory region, ie a memory reference
to name[0].

1.15.19 Program.wrap_in_numshots_loop

Program.wrap_in_numshots_loop(shots)
Wraps a Quil program in a loop that re-runs the same program many times.

Note: this function is a prototype of what will exist in the future when users will be responsible for writing
this loop instead of having it happen automatically.

Parameters shots (int) – Number of iterations to loop through.

Control Flow

while_do(classical_reg, q_program) While a classical register at index classical_reg is 1,
loop q_program

if_then(classical_reg, if_program[, . . . ]) If the classical register at index classical reg is 1, run
if_program, else run else_program.

1.15.20 Program.while_do

Program.while_do(classical_reg, q_program)
While a classical register at index classical_reg is 1, loop q_program

Equivalent to the following construction:

Parameters

• classical_reg (int) – The classical register to check

• q_program (Program) – The Quil program to loop.

Returns The Quil Program with the loop instructions added.

Return type Program

1.15.21 Program.if_then

Program.if_then(classical_reg, if_program, else_program=None)
If the classical register at index classical reg is 1, run if_program, else run else_program.

Equivalent to the following construction:

Parameters

• classical_reg (int) – The classical register to check as the condition
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• if_program (Program) – A Quil program to execute if classical_reg is 1

• else_program (Program) – A Quil program to execute if classical_reg is 0. This
argument is optional and defaults to an empty Program.

Returns The Quil Program with the branching instructions added.

Return type Program

Utility Methods

copy() Perform a shallow copy of this program.
pop() Pops off the last instruction.
dagger([inv_dict, suffix]) Creates the conjugate transpose of the Quil program.
__getitem__(index) Allows indexing into the program to get an action.

1.15.22 Program.copy

Program.copy()
Perform a shallow copy of this program.

QuilAtom and AbstractInstruction objects should be treated as immutable to avoid strange behavior when
performing a copy.

Returns a new Program

1.15.23 Program.pop

Program.pop()
Pops off the last instruction.

Returns The instruction that was popped.

Return type tuple

1.15.24 Program.dagger

Program.dagger(inv_dict=None, suffix=’-INV’)
Creates the conjugate transpose of the Quil program. The program must not contain any irreversible actions
(measurement, control flow, qubit allocation).

Returns The Quil program’s inverse

Return type Program

1.15.25 Program.__getitem__

Program.__getitem__(index)
Allows indexing into the program to get an action.

Parameters index – The action at the specified index.

Returns
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1.15.26 Utility Functions

pyquil.quil.get_default_qubit_mapping(program)
Takes a program which contains qubit placeholders and provides a mapping to the integers 0 through N-1.

The output of this function is suitable for input to address_qubits().

Parameters program – A program containing qubit placeholders

Returns A dictionary mapping qubit placeholder to an addressed qubit from 0 through N-1.

pyquil.quil.address_qubits(program, qubit_mapping=None)
Takes a program which contains placeholders and assigns them all defined values.

Either all qubits must be defined or all undefined. If qubits are undefined, you may provide a qubit mapping to
specify how placeholders get mapped to actual qubits. If a mapping is not provided, integers 0 through N are
used.

This function will also instantiate any label placeholders.

Parameters

• program – The program.

• qubit_mapping – A dictionary-like object that maps from QubitPlaceholder to
Qubit or int (but not both).

Returns A new Program with all qubit and label placeholders assigned to real qubits and labels.

pyquil.quil.instantiate_labels(instructions)
Takes an iterable of instructions which may contain label placeholders and assigns them all defined values.

Returns list of instructions with all label placeholders assigned to real labels.

pyquil.quil.implicitly_declare_ro(instructions)
Implicitly declare a register named ro for backwards compatibility with Quil 1.

There used to be one un-named hunk of classical memory. Now there are variables with declarations. Instead
of:

MEASURE 0 [0]

You must now measure into a named register, idiomatically:

MEASURE 0 ro[0]

The MEASURE instruction will emit this (with a deprecation warning) if you’re still using bare integers for
classical addresses. However, you must also declare memory in the new scheme:

DECLARE ro BIT[8]
MEASURE 0 ro[0]

This method will determine if you are in “backwards compatibility mode” and will declare a read-out ro register
for you. If you program contains any DECLARE commands or if it does not have any MEASURE x ro[x], this
will not do anything.

This behavior is included for backwards compatibility and will be removed in future releases of PyQuil. Please
DECLARE all memory including ro.

pyquil.quil.merge_with_pauli_noise(prog_list, probabilities, qubits)
Insert pauli noise channels between each item in the list of programs. This noise channel is implemented as a
single noisy identity gate acting on the provided qubits. This method does not rely on merge_programs and so
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avoids the inclusion of redundant Kraus Pragmas that would occur if merge_programs was called directly on
programs with distinct noisy gate definitions.

Parameters

• prog_list (Iterable[+T_co]) – an iterable such as a program or a list of programs. If
a program is provided, a single noise gate will be applied after each gate in the program. If
a list of programs is provided, the noise gate will be applied after each program.

• probabilities (List[~T]) – The 4^num_qubits list of probabilities specifying the de-
sired pauli channel. There should be either 4 or 16 probabilities specified in the order I, X,
Y, Z or II, IX, IY, IZ, XI, XX, XY, etc respectively.

• qubits (List[~T]) – a list of the qubits that the noisy gate should act on.

Returns A single program with noisy gates inserted between each element of the program list.

Return type Program

pyquil.quil.merge_programs(prog_list)
Merges a list of pyQuil programs into a single one by appending them in sequence. If multiple programs in the
list contain the same gate and/or noisy gate definition with identical name, this definition will only be applied
once. If different definitions with the same name appear multiple times in the program list, each will be applied
once in the order of last occurrence.

Parameters prog_list (list) – A list of pyquil programs

Returns a single pyQuil program

Return type Program

pyquil.quil.get_classical_addresses_from_program(program)
Returns a sorted list of classical addresses found in the MEASURE instructions in the program.

Parameters program (Program) – The program from which to get the classical addresses.

Return type Dict[str, List[int]]

Returns A mapping from memory region names to lists of offsets appearing in the program.

pyquil.quil.percolate_declares(program)
Move all the DECLARE statements to the top of the program. Return a fresh obejct.

Parameters program (Program) – Perhaps jumbled program.

Return type Program

Returns Program with DECLAREs all at the top and otherwise the same sorted contents.

pyquil.quil.validate_protoquil(program)
Ensure that a program is valid ProtoQuil, otherwise raise a ValueError. Protoquil is a subset of Quil which
excludes control flow and classical instructions.

Parameters program (Program) – The Quil program to validate.

Return type None

pyquil.parser.parse(quil)
Parse a raw Quil program and return a corresponding list of PyQuil objects.

Parameters quil (str) – a single or multiline Quil program

Returns list of instructions

pyquil.parser.parse_program(quil)
Parse a raw Quil program and return a PyQuil program.
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Parameters quil (str) – a single or multiline Quil program

Returns PyQuil Program object

1.16 Gates and Instructions

A Program is effectively a list of gates and instructions which can be created using the function documented in this
section:

>>> p = Program()
>>> p += H(qubit=0)
>>> p += RY(angle=pi/3, qubit=1)
>>> p += CNOT(0, 1)

...

1.16.1 Native gates for Rigetti QPUs

Physical quantum processors can enact a subset of all named gates. Luckily, a small set of gates is universal for
quantum computation, so all named gates can be enacted by suitable combinations of physically realizable gates.
Rigetti’s superconducting quantum processors can perform RX() with angle=+-pi/2 or angle=+-pi, RZ()
with an arbitrary angle, and CZ() interactions between neighboring qubits. Rigetti QPUs can natively measure in the
computational (Z) basis.

RX(angle, qubit) Produces the RX gate.
RZ(angle, qubit) Produces the RZ gate.
CZ(control, target) Produces a controlled-Z gate.
MEASURE(qubit, classical_reg) Produce a MEASURE instruction.

RX

pyquil.gates.RX(angle, qubit)
Produces the RX gate:

RX(phi) = [[cos(phi / 2), -1j * sin(phi / 2)],
[-1j * sin(phi / 2), cos(phi / 2)]]

This gate is a single qubit X-rotation.

Parameters

• angle – The angle to rotate around the x-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

RZ

pyquil.gates.RZ(angle, qubit)
Produces the RZ gate:
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RZ(phi) = [[cos(phi / 2) - 1j * sin(phi / 2), 0]
[0, cos(phi / 2) + 1j * sin(phi / 2)]]

This gate is a single qubit Z-rotation.

Parameters

• angle – The angle to rotate around the z-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

CZ

pyquil.gates.CZ(control, target)
Produces a controlled-Z gate:

CZ = [[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, -1]]

This gate applies to two qubit arguments to produce the controlled-Z gate instruction.

Parameters

• control – The control qubit.

• target – The target qubit. The target qubit has an Z-gate applied to it if the control qubit
is in the excited state.

Returns A Gate object.

MEASURE

pyquil.gates.MEASURE(qubit, classical_reg)
Produce a MEASURE instruction.

Parameters

• qubit – The qubit to measure.

• classical_reg – The classical register to measure into, or None.

Returns A Measurement instance.

1.16.2 All gates and instructions

In general, you will write a quantum program using the full suite of Quil gates and instructions and use the Quil
compiler to compile programs into the target instruction set (ISA). The full list of quantum gates and classical Quil
instructions is enumerated here.

Single-qubit gates
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I(qubit) Produces the I identity gate.
X(qubit) Produces the X (“NOT”) gate.
Y(qubit) Produces the Y gate.
Z(qubit) Produces the Z gate.
H(qubit) Produces the Hadamard gate.
S(qubit) Produces the S gate.
T(qubit) Produces the T gate.
RX(angle, qubit) Produces the RX gate.
RY(angle, qubit) Produces the RY gate.
RZ(angle, qubit) Produces the RZ gate.
PHASE(angle, qubit) Produces the PHASE gate.

I

pyquil.gates.I(qubit)
Produces the I identity gate:

I = [1, 0]
[0, 1]

This gate is a single qubit identity gate. Note that this gate is different that the NOP instruction as noise channels
are typically still applied during the duration of identity gates. Identities will also block parallelization like any
other gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

X

pyquil.gates.X(qubit)
Produces the X (“NOT”) gate:

X = [[0, 1],
[1, 0]]

This gate is a single qubit X-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

Y

pyquil.gates.Y(qubit)
Produces the Y gate:

Y = [[0, 0 - 1j],
[0 + 1j, 0]]

This gate is a single qubit Y-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.
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Z

pyquil.gates.Z(qubit)
Produces the Z gate:

Z = [[1, 0],
[0, -1]]

This gate is a single qubit Z-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

H

pyquil.gates.H(qubit)
Produces the Hadamard gate:

H = (1 / sqrt(2)) * [[1, 1],
[1, -1]]

Produces the H instruction. This gate is a single qubit Hadamard gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

S

pyquil.gates.S(qubit)
Produces the S gate:

S = [[1, 0],
[0, 1j]]

This gate is a single qubit S-gate.

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.

T

pyquil.gates.T(qubit)
Produces the T gate:

T = [[1, 0],
[0, exp(1j * pi / 4)]]

This gate is a single qubit T-gate. It is the same as RZ(pi/4).

Parameters qubit – The qubit apply the gate to.

Returns A Gate object.
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RY

pyquil.gates.RY(angle, qubit)
Produces the RY gate:

RY(phi) = [[cos(phi / 2), -sin(phi / 2)],
[sin(phi / 2), cos(phi / 2)]]

This gate is a single qubit Y-rotation.

Parameters

• angle – The angle to rotate around the y-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

PHASE

pyquil.gates.PHASE(angle, qubit)
Produces the PHASE gate:

PHASE(phi) = [[1, 0],
[0, exp(1j * phi)]]

This is the same as the RZ gate.

Parameters

• angle – The angle to rotate around the z-axis on the bloch sphere.

• qubit – The qubit apply the gate to.

Returns A Gate object.

Multi-qubit gates

CZ(control, target) Produces a controlled-Z gate.
CNOT(control, target) Produces a controlled-NOT (controlled-X) gate.
CCNOT(control1, control2, target) Produces a doubly-controlled NOT gate.
CPHASE00(angle, control, target) Produces a controlled-phase gate that phases the |00>

state.
CPHASE01(angle, control, target) Produces a controlled-phase gate that phases the |01>

state.
CPHASE10(angle, control, target) Produces a controlled-phase gate that phases the |10>

state.
CPHASE(angle, control, target) Produces a controlled-phase instruction.
SWAP(q1, q2) Produces a SWAP gate which swaps the state of two

qubits.
CSWAP(control, target_1, target_2) Produces a controlled-SWAP gate.
ISWAP(q1, q2) Produces an ISWAP gate.
PSWAP(angle, q1, q2) Produces a parameterized SWAP gate.
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CNOT

pyquil.gates.CNOT(control, target)
Produces a controlled-NOT (controlled-X) gate:

CNOT = [[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]]

This gate applies to two qubit arguments to produce the controlled-not gate instruction.

Parameters

• control – The control qubit.

• target – The target qubit. The target qubit has an X-gate applied to it if the control qubit
is in the |1> state.

Returns A Gate object.

CCNOT

pyquil.gates.CCNOT(control1, control2, target)
Produces a doubly-controlled NOT gate:

CCNOT = [[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0]]

This gate applies to three qubit arguments to produce the controlled-controlled-not gate instruction.

Parameters

• control1 – The first control qubit.

• control2 – The second control qubit.

• target – The target qubit. The target qubit has an X-gate applied to it if both control
qubits are in the excited state.

Returns A Gate object.

CPHASE00

pyquil.gates.CPHASE00(angle, control, target)
Produces a controlled-phase gate that phases the |00> state:

CPHASE00(phi) = diag([exp(1j * phi), 1, 1, 1])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 00.

Parameters
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• angle – The input phase angle to apply when both qubits are in the |0> state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

CPHASE01

pyquil.gates.CPHASE01(angle, control, target)
Produces a controlled-phase gate that phases the |01> state:

CPHASE01(phi) = diag([1.0, exp(1j * phi), 1.0, 1.0])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 01.

Parameters

• angle – The input phase angle to apply when q1 is in the |1> state and q2 is in the |0>
state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

CPHASE10

pyquil.gates.CPHASE10(angle, control, target)
Produces a controlled-phase gate that phases the |10> state:

CPHASE10(phi) = diag([1, 1, exp(1j * phi), 1])

This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 10.

Parameters

• angle – The input phase angle to apply when q2 is in the |1> state and q1 is in the |0>
state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

CPHASE

pyquil.gates.CPHASE(angle, control, target)
Produces a controlled-phase instruction:

CPHASE(phi) = diag([1, 1, 1, exp(1j * phi)])
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This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects
the state 11.

Compare with the CPHASExx() variants. This variant is the most common and does not have a suffix, although
you can think of it as ‘‘CPHASE11‘.

Parameters

• angle – The input phase angle to apply when both qubits are in the |1> state.

• control – Qubit 1.

• target – Qubit 2.

Returns A Gate object.

SWAP

pyquil.gates.SWAP(q1, q2)
Produces a SWAP gate which swaps the state of two qubits:

SWAP = [[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]]

Parameters

• q1 – Qubit 1.

• q2 – Qubit 2.

Returns A Gate object.

CSWAP

pyquil.gates.CSWAP(control, target_1, target_2)
Produces a controlled-SWAP gate. This gate conditionally swaps the state of two qubits:

CSWAP = [[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1]]

Parameters

• control – The control qubit.

• target-1 – The first target qubit.

• target-2 – The second target qubit. The two target states are swapped if the control is in
the |1> state.
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ISWAP

pyquil.gates.ISWAP(q1, q2)
Produces an ISWAP gate:

ISWAP = [[1, 0, 0, 0],
[0, 0, 1j, 0],
[0, 1j, 0, 0],
[0, 0, 0, 1]]

This gate swaps the state of two qubits, applying a -i phase to q1 when it is in the 1 state and a -i phase to q2
when it is in the 0 state.

Parameters

• q1 – Qubit 1.

• q2 – Qubit 2.

Returns A Gate object.

PSWAP

pyquil.gates.PSWAP(angle, q1, q2)
Produces a parameterized SWAP gate:

PSWAP(phi) = [[1, 0, 0, 0],
[0, 0, exp(1j * phi), 0],
[0, exp(1j * phi), 0, 0],
[0, 0, 0, 1]]

Parameters

• angle – The angle of the phase to apply to the swapped states. This phase is applied to q1
when it is in the 1 state and to q2 when it is in the 0 state.

• q1 – Qubit 1.

• q2 – Qubit 2.

Returns A Gate object.

Classical instructions

WAIT This instruction tells the quantum computation to halt.
RESET([qubit_index]) Reset all qubits or just a specific qubit at qubit_index.
NOP This instruction applies no operation at that timestep.
HALT This instruction ends the program.
MEASURE(qubit, classical_reg) Produce a MEASURE instruction.
NEG(classical_reg) Produce a NEG instruction.
NOT(classical_reg) Produce a NOT instruction.
AND(classical_reg1, classical_reg2) Produce an AND instruction.
OR(classical_reg1, classical_reg2) Produce an OR instruction.
IOR(classical_reg1, classical_reg2) Produce an inclusive OR instruction.
XOR(classical_reg1, classical_reg2) Produce an exclusive OR instruction.

Continued on next page
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Table 8 – continued from previous page
MOVE(classical_reg1, classical_reg2) Produce a MOVE instruction.
EXCHANGE(classical_reg1, classical_reg2) Produce an EXCHANGE instruction.
LOAD(target_reg, region_name, offset_reg) Produce a LOAD instruction.
STORE(region_name, offset_reg, source) Produce a STORE instruction.
CONVERT(classical_reg1, classical_reg2) Produce a CONVERT instruction.
ADD(classical_reg, right) Produce an ADD instruction.
SUB(classical_reg, right) Produce a SUB instruction.
MUL(classical_reg, right) Produce a MUL instruction.
DIV (classical_reg, right) Produce an DIV instruction.
EQ(classical_reg1, classical_reg2, . . . ) Produce an EQ instruction.
LT(classical_reg1, classical_reg2, . . . ) Produce an LT instruction.
LE(classical_reg1, classical_reg2, . . . ) Produce an LE instruction.
GT(classical_reg1, classical_reg2, . . . ) Produce an GT instruction.
GE(classical_reg1, classical_reg2, . . . ) Produce an GE instruction.

WAIT

pyquil.gates.WAIT = <pyquil.quilbase.Wait object>
This instruction tells the quantum computation to halt. Typically these is used while classical memory is being
manipulated by a CPU in a hybrid classical/quantum algorithm.

Returns A Wait object.

RESET

pyquil.gates.RESET(qubit_index=None)
Reset all qubits or just a specific qubit at qubit_index.

Parameters qubit_index (Optional[int]) – The address of the qubit to reset. If None, reset
all qubits.

Returns A Reset or ResetQubit Quil AST expression corresponding to a global or targeted reset,
respectively.

Return type Union[Reset, ResetQubit]

NOP

pyquil.gates.NOP = <pyquil.quilbase.Nop object>
This instruction applies no operation at that timestep. Typically these are ignored in error-models.

Returns A Nop object.

HALT

pyquil.gates.HALT = <pyquil.quilbase.Halt object>
This instruction ends the program.

Returns A Halt object.
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NEG

pyquil.gates.NEG(classical_reg)
Produce a NEG instruction.

Parameters classical_reg – A classical memory address to modify.

Returns A ClassicalNeg instance.

NOT

pyquil.gates.NOT(classical_reg)
Produce a NOT instruction.

Parameters classical_reg – A classical register to modify.

Returns A ClassicalNot instance.

AND

pyquil.gates.AND(classical_reg1, classical_reg2)
Produce an AND instruction.

NOTE: The order of operands was reversed in pyQuil <=1.9 .

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalAnd instance.

OR

pyquil.gates.OR(classical_reg1, classical_reg2)
Produce an OR instruction.

NOTE: Deprecated. Use IOR instead.

Parameters

• classical_reg1 – The first classical register.

• classical_reg2 – The second classical register, which gets modified.

Returns A ClassicalOr instance.

IOR

pyquil.gates.IOR(classical_reg1, classical_reg2)
Produce an inclusive OR instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalOr instance.
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XOR

pyquil.gates.XOR(classical_reg1, classical_reg2)
Produce an exclusive OR instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalOr instance.

MOVE

pyquil.gates.MOVE(classical_reg1, classical_reg2)
Produce a MOVE instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register or immediate value.

Returns A ClassicalMove instance.

EXCHANGE

pyquil.gates.EXCHANGE(classical_reg1, classical_reg2)
Produce an EXCHANGE instruction.

Parameters

• classical_reg1 – The first classical register, which gets modified.

• classical_reg2 – The second classical register, which gets modified.

Returns A ClassicalExchange instance.

LOAD

pyquil.gates.LOAD(target_reg, region_name, offset_reg)
Produce a LOAD instruction.

Parameters

• target_reg – LOAD storage target.

• region_name – Named region of memory to load from.

• offset_reg – Offset into region of memory to load from. Must be a MemoryReference.

Returns A ClassicalLoad instance.

STORE

pyquil.gates.STORE(region_name, offset_reg, source)
Produce a STORE instruction.

Parameters
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• region_name – Named region of memory to store to.

• offset_reg – Offset into memory region. Must be a MemoryReference.

• source – Source data. Can be either a MemoryReference or a constant.

Returns A ClassicalStore instance.

CONVERT

pyquil.gates.CONVERT(classical_reg1, classical_reg2)
Produce a CONVERT instruction.

Parameters

• classical_reg1 – MemoryReference to store to.

• classical_reg2 – MemoryReference to read from.

Returns A ClassicalCONVERT instance.

ADD

pyquil.gates.ADD(classical_reg, right)
Produce an ADD instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalAdd instance.

SUB

pyquil.gates.SUB(classical_reg, right)
Produce a SUB instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalSub instance.

MUL

pyquil.gates.MUL(classical_reg, right)
Produce a MUL instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.
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Returns A ClassicalMul instance.

DIV

pyquil.gates.DIV(classical_reg, right)
Produce an DIV instruction.

Parameters

• classical_reg – Left operand for the arithmetic operation. Also serves as the store
target.

• right – Right operand for the arithmetic operation.

Returns A ClassicalDiv instance.

EQ

pyquil.gates.EQ(classical_reg1, classical_reg2, classical_reg3)
Produce an EQ instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalEqual instance.

LT

pyquil.gates.LT(classical_reg1, classical_reg2, classical_reg3)
Produce an LT instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalLessThan instance.

LE

pyquil.gates.LE(classical_reg1, classical_reg2, classical_reg3)
Produce an LE instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalLessEqual instance.
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GT

pyquil.gates.GT(classical_reg1, classical_reg2, classical_reg3)
Produce an GT instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalGreaterThan instance.

GE

pyquil.gates.GE(classical_reg1, classical_reg2, classical_reg3)
Produce an GE instruction.

Parameters

• classical_reg1 – Memory address to which to store the comparison result.

• classical_reg2 – Left comparison operand.

• classical_reg3 – Right comparison operand.

Returns A ClassicalGreaterEqual instance.

Collections

QUANTUM_GATES Dictionary of quantum gate functions keyed by gate
names.

STANDARD_INSTRUCTIONS Dictionary of standard instruction functions keyed by
instruction names.

1.17 Pauli Operators

Quantum operators can be expressed as combinations of Pauli operators I, X, Y, Z:

>>> operator = sZ(0)*sZ(1) + sX(2)*sY(3)
>>> print(operator)
(1+0j)*Z0*Z1 + (1+0j)*X2*Y3

1.17.1 Construction functions

sX(q) A function that returns the sigma_X operator on a par-
ticular qubit.

sY(q) A function that returns the sigma_Y operator on a par-
ticular qubit.

sZ(q) A function that returns the sigma_Z operator on a par-
ticular qubit.

Continued on next page
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Table 10 – continued from previous page
sI([q]) A function that returns the identity operator, optionally

on a particular qubit.
ID() The identity operator.
ZERO() The zero operator.

sX

pyquil.paulis.sX(q)
A function that returns the sigma_X operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

sY

pyquil.paulis.sY(q)
A function that returns the sigma_Y operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

sZ

pyquil.paulis.sZ(q)
A function that returns the sigma_Z operator on a particular qubit.

Parameters qubit_index (int) – The index of the qubit

Returns A PauliTerm object

Return type PauliTerm

sI

pyquil.paulis.sI(q=None)
A function that returns the identity operator, optionally on a particular qubit.

This can be specified without a qubit.

Parameters qubit_index (int) – The optional index of a qubit.

Returns A PauliTerm object

Return type PauliTerm

ID

pyquil.paulis.ID()
The identity operator.
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ZERO

pyquil.paulis.ZERO()
The zero operator.

1.17.2 Working with operators

simplify_pauli_sum(pauli_sum) Simplify the sum of Pauli operators according to Pauli
algebra rules.

check_commutation(pauli_list, pauli_two) Check if commuting a PauliTerm commutes with a list
of other terms by natural calculation.

commuting_sets(pauli_terms) Gather the Pauli terms of pauli_terms variable into com-
muting sets

is_identity(term) Tests to see if a PauliTerm or PauliSum is a scalar mul-
tiple of identity

is_zero(pauli_object) Tests to see if a PauliTerm or PauliSum is zero.
exponentiate(term) Creates a pyQuil program that simulates the unitary evo-

lution exp(-1j * term)
exponential_map(term) Returns a function f(alpha) that constructs the Program

corresponding to exp(-1j*alpha*term).
exponentiate_commuting_pauli_sum(pauli_sum)Returns a function that maps all substituent PauliTerms

and sums them into a program.
suzuki_trotter(trotter_order, trotter_steps) Generate trotterization coefficients for a given number

of Trotter steps.
trotterize(first_pauli_term, second_pauli_term) Create a Quil program that approximates exp( (A + B)t)

where A and B are PauliTerm operators.

simplify_pauli_sum

pyquil.paulis.simplify_pauli_sum(pauli_sum)
Simplify the sum of Pauli operators according to Pauli algebra rules.

check_commutation

pyquil.paulis.check_commutation(pauli_list, pauli_two)
Check if commuting a PauliTerm commutes with a list of other terms by natural calculation. Uses the result
in Section 3 of arXiv:1405.5749v2, modified slightly here to check for the number of anti-coincidences (which
must always be even for commuting PauliTerms) instead of the no. of coincidences, as in the paper.

Parameters

• pauli_list (list) – A list of PauliTerm objects

• pauli_two_term (PauliTerm) – A PauliTerm object

Returns True if pauli_two object commutes with pauli_list, False otherwise

Return type bool

commuting_sets

pyquil.paulis.commuting_sets(pauli_terms)
Gather the Pauli terms of pauli_terms variable into commuting sets
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Uses algorithm defined in (Raeisi, Wiebe, Sanders, arXiv:1108.4318, 2011) to find commuting sets. Except uses
commutation check from arXiv:1405.5749v2

Parameters pauli_terms (PauliSum) – A PauliSum object

Returns List of lists where each list contains a commuting set

Return type list

is_identity

pyquil.paulis.is_identity(term)
Tests to see if a PauliTerm or PauliSum is a scalar multiple of identity

Parameters term – Either a PauliTerm or PauliSum

Returns True if the PauliTerm or PauliSum is a scalar multiple of identity, False otherwise

Return type bool

is_zero

pyquil.paulis.is_zero(pauli_object)
Tests to see if a PauliTerm or PauliSum is zero.

Parameters pauli_object – Either a PauliTerm or PauliSum

Returns True if PauliTerm is zero, False otherwise

Return type bool

exponentiate

pyquil.paulis.exponentiate(term)
Creates a pyQuil program that simulates the unitary evolution exp(-1j * term)

Parameters term (PauliTerm) – A pauli term to exponentiate

Returns A Program object

Return type Program

exponential_map

pyquil.paulis.exponential_map(term)
Returns a function f(alpha) that constructs the Program corresponding to exp(-1j*alpha*term).

Parameters term – A pauli term to exponentiate

Returns A function that takes an angle parameter and returns a program.

Return type Function
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exponentiate_commuting_pauli_sum

pyquil.paulis.exponentiate_commuting_pauli_sum(pauli_sum)
Returns a function that maps all substituent PauliTerms and sums them into a program. NOTE: Use this function
with care. Substituent PauliTerms should commute.

Parameters pauli_sum (PauliSum) – PauliSum to exponentiate.

Returns A function that parametrizes the exponential.

Return type function

suzuki_trotter

pyquil.paulis.suzuki_trotter(trotter_order, trotter_steps)
Generate trotterization coefficients for a given number of Trotter steps.

U = exp(A + B) is approximated as exp(w1*o1)exp(w2*o2). . . This method returns a list [(w1, o1), (w2, o2),
. . . , (wm, om)] of tuples where o=0 corresponds to the A operator, o=1 corresponds to the B operator, and w
is the coefficient in the exponential. For example, a second order Suzuki-Trotter approximation to exp(A + B)
results in the following [(0.5/trotter_steps, 0), (1/trotteri_steps, 1), (0.5/trotter_steps, 0)] * trotter_steps.

Parameters

• trotter_order (int) – order of Suzuki-Trotter approximation

• trotter_steps (int) – number of steps in the approximation

Returns List of tuples corresponding to the coefficient and operator type: o=0 is A and o=1 is B.

Return type list

trotterize

pyquil.paulis.trotterize(first_pauli_term, second_pauli_term, trotter_order=1, trotter_steps=1)
Create a Quil program that approximates exp( (A + B)t) where A and B are PauliTerm operators.

Parameters

• first_pauli_term (PauliTerm) – PauliTerm denoted A

• second_pauli_term (PauliTerm) – PauliTerm denoted B

• trotter_order (int) – Optional argument indicating the Suzuki-Trotter approximation
order–only accepts orders 1, 2, 3, 4.

• trotter_steps (int) – Optional argument indicating the number of products to de-
compose the exponential into.

Returns Quil program

Return type Program

1.17.3 Classes

class pyquil.paulis.PauliSum(terms)
A sum of one or more PauliTerms.

Parameters terms (Sequence) – A Sequence of PauliTerms.
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Methods

get_qubits() The support of all the operators in the PauliSum ob-
ject.

simplify() Simplifies the sum of Pauli operators according to
Pauli algebra rules.

get_programs() Get a Pyquil Program corresponding to each term in
the PauliSum and a coefficient for each program

PauliSum.get_qubits

PauliSum.get_qubits()
The support of all the operators in the PauliSum object.

Returns A list of all the qubits in the sum of terms.

Return type list

PauliSum.simplify

PauliSum.simplify()
Simplifies the sum of Pauli operators according to Pauli algebra rules.

PauliSum.get_programs

PauliSum.get_programs()
Get a Pyquil Program corresponding to each term in the PauliSum and a coefficient for each program

Returns (programs, coefficients)

class pyquil.paulis.PauliTerm(op, index, coefficient=1.0)
A term is a product of Pauli operators operating on different qubits.

Create a new Pauli Term with a Pauli operator at a particular index and a leading coefficient.

Parameters

• op (str) – The Pauli operator as a string “X”, “Y”, “Z”, or “I”

• index (int) – The qubit index that that operator is applied to.

• coefficient (Union[int, float, complex]) – The coefficient multiplying the op-
erator, e.g. 1.5 * Z_1

Methods

id([sort_ops]) Returns an identifier string for the PauliTerm (ignor-
ing the coefficient).

operations_as_set() Return a frozenset of operations in this term.
copy() Properly creates a new PauliTerm, with a completely

new dictionary of operators
program

Continued on next page
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Table 13 – continued from previous page
from_list(terms_list[, coefficient]) Allocates a Pauli Term from a list of operators and

indices.
pauli_string([qubits]) Return a string representation of this PauliTerm with-

out its coefficient and with implicit qubit indices.

PauliTerm.id

PauliTerm.id(sort_ops=True)
Returns an identifier string for the PauliTerm (ignoring the coefficient).

Don’t use this to compare terms. This function will not work with qubits that aren’t sortable.

Parameters sort_ops – Whether to sort operations by qubit. This is True by default for
backwards compatibility but will change in a future version. Callers should never rely on
comparing id’s for testing equality. See operations_as_set instead.

Returns A string representation of this term’s operations.

Return type string

PauliTerm.operations_as_set

PauliTerm.operations_as_set()
Return a frozenset of operations in this term.

Use this in place of id() if the order of operations in the term does not matter.

Returns frozenset of (op_str, coefficient) representing Pauli operations

PauliTerm.copy

PauliTerm.copy()
Properly creates a new PauliTerm, with a completely new dictionary of operators

PauliTerm.program

PauliTerm.program

PauliTerm.from_list

classmethod PauliTerm.from_list(terms_list, coefficient=1.0)
Allocates a Pauli Term from a list of operators and indices. This is more efficient than multiplying together
individual terms.

Parameters terms_list (list) – A list of tuples, e.g. [(“X”, 0), (“Y”, 1)]

Returns PauliTerm

PauliTerm.pauli_string

PauliTerm.pauli_string(qubits=None)
Return a string representation of this PauliTerm without its coefficient and with implicit qubit indices.
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If a list of qubits is provided, each character in the resulting string represents a Pauli operator on the
corresponding qubit. If qubit indices are not provided as input, the returned string will be all non-identity
operators in the order. This doesn’t make much sense, so please provide a list of qubits. Not providing a
list of qubits is deprecated.

>>> p = PauliTerm("X", 0) * PauliTerm("Y", 1, 1.j)
>>> p.pauli_string()
"XY"
>>> p.pauli_string(qubits=[0])
"X"
>>> p.pauli_string(qubits=[0, 2])
"XI"

Parameters qubits (list) – The list of qubits to represent, given as ints. If None, defaults
to all qubits in this PauliTerm.

Returns The string representation of this PauliTerm, sans coefficient

1.18 Quantum Computer

pyquil.get_qc(name, *, as_qvm=None, noisy=None, connection=None)
Get a quantum computer.

A quantum computer is an object of type QuantumComputer and can be backed either by a QVM simulator
(“Quantum/Quil Virtual Machine”) or a physical Rigetti QPU (“Quantum Processing Unit”) made of supercon-
ducting qubits.

You can choose the quantum computer to target through a combination of its name and optional flags. There are
multiple ways to get the same quantum computer. The following are equivalent:

>>> qc = get_qc("Aspen-1-16Q-A-noisy-qvm")
>>> qc = get_qc("Aspen-1-16Q-A", as_qvm=True, noisy=True)

and will construct a simulator of an Aspen-1 lattice with a noise model based on device characteristics. We
also provide a means for constructing generic quantum simulators that are not related to a given piece of Rigetti
hardware:

>>> qc = get_qc("9q-square-qvm")
>>> qc = get_qc("9q-square", as_qvm=True)

Finally, you can get request a QVM with “no” topology of a given number of qubits (technically, it’s a fully
connected graph among the given number of qubits) with:

>>> qc = get_qc("5q-qvm") # or "6q-qvm", or "34q-qvm", ...

These less-realistic, fully-connected QVMs will also be more lenient on what types of programs they will
run. Specifically, you do not need to do any compilation. For the other, realistic QVMs you must use qc.
compile() or qc.compiler.native_quil_to_executable() prior to qc.run().

The Rigetti QVM must be downloaded from https://www.rigetti.com/forest and run as a server alongside your
python program. To use pyQuil’s built-in QVM, replace all "-qvm" suffixes with "-pyqvm":

>>> qc = get_qc("5q-pyqvm")

Redundant flags are acceptable, but conflicting flags will raise an exception:
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>>> qc = get_qc("9q-square-qvm") # qc is fully specified by its name
>>> qc = get_qc("9q-square-qvm", as_qvm=True) # redundant, but ok
>>> qc = get_qc("9q-square-qvm", as_qvm=False) # Error!

Use list_quantum_computers() to retrieve a list of known qc names.

This method is provided as a convenience to quickly construct and use QVM’s and QPU’s. Power users may
wish to have more control over the specification of a quantum computer (e.g. custom noise models, bespoke
topologies, etc.). This is possible by constructing a QuantumComputer object by hand. Please refer to the
documentation on QuantumComputer for more information.

Parameters

• name (str) – The name of the desired quantum computer. This should correspond to a
name returned by list_quantum_computers(). Names ending in “-qvm” will return
a QVM. Names ending in “-pyqvm” will return a PyQVM. Names ending in “-noisy-qvm”
will return a QVM with a noise model. Otherwise, we will return a QPU with the given
name.

• as_qvm (Optional[bool]) – An optional flag to force construction of a QVM (instead
of a QPU). If specified and set to True, a QVM-backed quantum computer will be returned
regardless of the name’s suffix

• noisy (Optional[bool]) – An optional flag to force inclusion of a noise model.
If specified and set to True, a quantum computer with a noise model will be re-
turned regardless of the name’s suffix. The noise model for QVMs based on a real
QPU is an empirically parameterized model based on real device noise characteristics.
The generic QVM noise model is simple T1 and T2 noise plus readout error. See
decoherence_noise_with_asymmetric_ro().

• connection (Optional[ForestConnection]) – An optional
ForestConnection object. If not specified, the default values for URL end-
points will be used. If you deign to change any of these parameters, pass your own
ForestConnection object.

Return type QuantumComputer

Returns A pre-configured QuantumComputer

pyquil.list_quantum_computers(connection=None, qpus=True, qvms=True)
List the names of available quantum computers

Parameters

• connection (Optional[ForestConnection]) – An optional
:py:class:ForestConnection‘ object. If not specified, the default values for URL end-
points will be used, and your API key will be read from ~/.pyquil_config. If you deign to
change any of these parameters, pass your own ForestConnection object.

• qpus (bool) – Whether to include QPU’s in the list.

• qvms (bool) – Whether to include QVM’s in the list.

Return type List[str]

class pyquil.api.QuantumComputer(*, name, qam, device, compiler, symmetrize_readout=False)
A quantum computer for running quantum programs.

A quantum computer has various characteristics like supported gates, qubits, qubit topologies, gate fidelities,
and more. A quantum computer also has the ability to run quantum programs.
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A quantum computer can be a real Rigetti QPU that uses superconducting transmon qubits to run quantum
programs, or it can be an emulator like the Rigetti QVM with noise models and mimicked topologies.

Parameters

• name (str) – A string identifying this particular quantum computer.

• qam (QAM ) – A quantum abstract machine which handles executing quantum programs.
This dispatches to a QVM or QPU.

• device (AbstractDevice) – A collection of connected qubits and associated specs
and topology.

• symmetrize_readout (bool) – Whether to apply readout error symmetrization. See
run_symmetrized_readout() for a complete description.

Methods

run(executable[, memory_map]) Run a quil executable.
run_and_measure(program, trials) Run the provided state preparation program and mea-

sure all qubits.
run_symmetrized_readout(program, trials) Run a quil program in such a way that the readout

error is made collectively symmetric
qubits() Return a sorted list of this QuantumComputer’s de-

vice’s qubits
qubit_topology() Return a NetworkX graph representation of this

QuantumComputer’s device’s qubit connectivity.
get_isa([oneq_type, twoq_type]) Return a target ISA for this QuantumComputer’s de-

vice.
compile(program[, to_native_gates, optimize]) A high-level interface to program compilation.

1.18.1 QuantumComputer.run

QuantumComputer.run(executable, memory_map=None)
Run a quil executable. If the executable contains declared parameters, then a memory map must be pro-
vided, which defines the runtime values of these parameters.

Parameters

• executable (Union[BinaryExecutableResponse,
PyQuilExecutableResponse]) – The program to run. You are responsible
for compiling this first.

• memory_map (Optional[Dict[str, List[Union[int, float]]]]) – The mapping
of declared parameters to their values. The values are a list of floats or integers.

Return type ndarray

Returns A numpy array of shape (trials, len(ro-register)) that contains 0s and 1s.

1.18.2 QuantumComputer.run_and_measure

QuantumComputer.run_and_measure(program, trials)
Run the provided state preparation program and measure all qubits.

This will measure all the qubits on this QuantumComputer, not just qubits that are used in the program.
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The returned data is a dictionary keyed by qubit index because qubits for a given QuantumComputer may
be non-contiguous and non-zero-indexed. To turn this dictionary into a 2d numpy array of bitstrings,
consider:

bitstrings = qc.run_and_measure(...)
bitstring_array = np.vstack(bitstrings[q] for q in qc.qubits()).T
bitstring_array.shape # (trials, len(qc.qubits()))

Note: In contrast to QVMConnection.run_and_measure, this method simulates noise correctly
for noisy QVMs. However, this method is slower for trials > 1. For faster noise-free simulation,
consider WavefunctionSimulator.run_and_measure.

Parameters

• program (Program) – The state preparation program to run and then measure.

• trials (int) – The number of times to run the program.

Return type Dict[int, ndarray]

Returns A dictionary keyed by qubit index where the corresponding value is a 1D array of
measured bits.

1.18.3 QuantumComputer.run_symmetrized_readout

QuantumComputer.run_symmetrized_readout(program, trials)
Run a quil program in such a way that the readout error is made collectively symmetric

This means the probability of a bitstring b being mistaken for a bitstring c is the same as the probability
of not(b) being mistaken for not(c)

A more general symmetrization would guarantee that the probability of b being mistaken for c depends
only on which bit of c are different from b. This would require choosing random subsets of bits to flip.

In a noisy device, the probability of accurately reading the 0 state might be higher than that of the 1 state.
This makes correcting for readout more difficult. This function runs the program normally (trials//
2) times. The other half of the time, it will insert an X gate prior to any MEASURE instruction and then
flip the measured classical bit back.

See run() for this function’s parameter descriptions.

Return type ndarray

1.18.4 QuantumComputer.qubits

QuantumComputer.qubits()
Return a sorted list of this QuantumComputer’s device’s qubits

See AbstractDevice.qubits() for more.

Return type List[int]
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1.18.5 QuantumComputer.qubit_topology

QuantumComputer.qubit_topology()
Return a NetworkX graph representation of this QuantumComputer’s device’s qubit connectivity.

See AbstractDevice.qubit_topology() for more.

Return type <module ‘networkx.classes.graph’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/pyquil/envs/v2.6.0/lib/python3.6/site-
packages/networkx/classes/graph.py’>

1.18.6 QuantumComputer.get_isa

QuantumComputer.get_isa(oneq_type=’Xhalves’, twoq_type=’CZ’)
Return a target ISA for this QuantumComputer’s device.

See AbstractDevice.get_isa() for more.

Parameters

• oneq_type (str) – The family of one-qubit gates to target

• twoq_type (str) – The family of two-qubit gates to target

Return type ISA

1.18.7 QuantumComputer.compile

QuantumComputer.compile(program, to_native_gates=True, optimize=True)
A high-level interface to program compilation.

Compilation currently consists of two stages. Please see the AbstractCompiler docs for more infor-
mation. This function does all stages of compilation.

Right now both to_native_gates and optimize must be either both set or both unset. More mod-
ular compilation passes may be available in the future.

Parameters

• program (Program) – A Program

• to_native_gates (bool) – Whether to compile non-native gates to native gates.

• optimize (bool) – Whether to optimize programs to reduce the number of operations.

Return type Union[BinaryExecutableResponse, PyQuilExecutableResponse]

Returns An executable binary suitable for passing to QuantumComputer.run().

1.19 Compilers

An appropriate compiler is automatically created when using get_qc() and it is stored on the QuantumComputer
object as the compiler attribute.

The exact process for compilation depends on whether you’re targeting a QPU or a QVM, and you can conceive of
other compilation strategies than those included with pyQuil by default. Therefore, we define an abstract interface that
all compilers must follow. See AbstractCompiler for more, or use one of the listed compilers below.
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_qac.AbstractCompiler The abstract interface for a compiler.
QVMCompiler(endpoint, device[, timeout]) Client to communicate with the Compiler Server.
QPUCompiler(quilc_endpoint, . . . [, timeout, name]) Client to communicate with the Compiler Server.

1.19.1 pyquil.api._qac.AbstractCompiler

class pyquil.api._qac.AbstractCompiler
The abstract interface for a compiler.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

get_version_info() Return version information for this compiler and its
dependencies.

native_quil_to_executable(nq_program) Compile a native quil program to a binary exe-
cutable.

quil_to_native_quil(program) Compile an arbitrary quil program according to the
ISA of target_device.

1.19.2 pyquil.api.QVMCompiler

class pyquil.api.QVMCompiler(endpoint, device, timeout=10)
Client to communicate with the Compiler Server.

Parameters

• endpoint (str) – TCP or IPC endpoint of the Compiler Server

• device (AbstractDevice) – PyQuil Device object to use as compilation target

__init__(endpoint, device, timeout=10)
Client to communicate with the Compiler Server.

Parameters

• endpoint (str) – TCP or IPC endpoint of the Compiler Server

• device (AbstractDevice) – PyQuil Device object to use as compilation target

Return type None

Methods

__init__(endpoint, device[, timeout]) Client to communicate with the Compiler Server.
get_version_info() Return version information for this compiler and its

dependencies.
native_quil_to_executable(nq_program) Compile a native quil program to a binary exe-

cutable.
quil_to_native_quil(program) Compile an arbitrary quil program according to the

ISA of target_device.
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1.19.3 pyquil.api.QPUCompiler

class pyquil.api.QPUCompiler(quilc_endpoint, qpu_compiler_endpoint, device, timeout=10,
name=None)

Client to communicate with the Compiler Server.

Parameters

• quilc_endpoint (str) – TCP or IPC endpoint of the Quil Compiler (quilc)

• qpu_compiler_endpoint (Optional[str]) – TCP or IPC endpoint of the QPU
Compiler

• device (AbstractDevice) – PyQuil Device object to use as compilation target

• timeout (int) – Number of seconds to wait for a response from the client.

• name (Optional[str]) – Name of the lattice being targeted

__init__(quilc_endpoint, qpu_compiler_endpoint, device, timeout=10, name=None)
Client to communicate with the Compiler Server.

Parameters

• quilc_endpoint (str) – TCP or IPC endpoint of the Quil Compiler (quilc)

• qpu_compiler_endpoint (Optional[str]) – TCP or IPC endpoint of the QPU
Compiler

• device (AbstractDevice) – PyQuil Device object to use as compilation target

• timeout (int) – Number of seconds to wait for a response from the client.

• name (Optional[str]) – Name of the lattice being targeted

Return type None

Methods

__init__(quilc_endpoint, . . . [, timeout, name]) Client to communicate with the Compiler Server.
get_version_info() Return version information for this compiler and its

dependencies.
native_quil_to_executable(nq_program) Compile a native quil program to a binary exe-

cutable.
quil_to_native_quil(program) Compile an arbitrary quil program according to the

ISA of target_device.

1.20 QAMs

An appropriate QAM is automatically created when using get_qc() and it is stored on the QuantumComputer
object as the qam attribute.

The Quantum Abstract Machine (QAM) provides an abstract interface for running hybrid quantum/classical quil pro-
grams on either a Quantum Virtual Machine (QVM, a classical simulator) or a Quantum Processor Unit (QPU, a real
quantum device).
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QAM () The platonic ideal of this class is as a generic interface
describing how a classical computer interacts with a live
quantum computer.

QPU (endpoint[, user]) A connection to the QPU.
QVM (connection[, noise_model, gate_noise, . . . ]) A virtual machine that classically emulates the execu-

tion of Quil programs.
PyQVM (n_qubits[, quantum_simulator_type, . . . ]) PyQuil’s built-in Quil virtual machine.

1.20.1 QAM

class pyquil.api._qam.QAM
The platonic ideal of this class is as a generic interface describing how a classical computer interacts with a live
quantum computer. Eventually, it will turn into a thin layer over the QPU and QVM’s “QPI” interfaces.

The reality is that neither the QPU nor the QVM currently support a full-on QPI interface, and so the undignified
job of this class is to collect enough state that it can convincingly pretend to be a QPI-compliant quantum
computer.

1.20.2 QPU

class pyquil.api.QPU(endpoint, user=’pyquil-user’)
A connection to the QPU.

Parameters

• endpoint (str) – Address to connect to the QPU server.

• user (str) – A string identifying who’s running jobs.

1.20.3 QVM

class pyquil.api.QVM(connection, noise_model=None, gate_noise=None, measurement_noise=None,
random_seed=None, requires_executable=False)

A virtual machine that classically emulates the execution of Quil programs.

Parameters

• connection (ForestConnection) – A connection to the Forest web API.

• noise_model – A noise model that describes noise to apply when emulating a program’s
execution.

• gate_noise – A list of three numbers [Px, Py, Pz] indicating the probability of an X, Y,
or Z gate getting applied to each qubit after a gate application or reset. The default value of
None indicates no noise.

• measurement_noise – A list of three numbers [Px, Py, Pz] indicating the probability
of an X, Y, or Z gate getting applied before a measurement. The default value of None
indicates no noise.

• random_seed – A seed for the QVM’s random number generators. Either None (for an
automatically generated seed) or a non-negative integer.

• requires_executable – Whether this QVM will refuse to run a Program and only
accept the result of compiler.native_quil_to_executable(). Setting this to
True better emulates the behavior of a QPU.
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1.20.4 PyQVM

class pyquil.pyqvm.PyQVM(n_qubits, quantum_simulator_type=None, seed=None,
post_gate_noise_probabilities=None)

PyQuil’s built-in Quil virtual machine.

This class implements common control flow and plumbing and dispatches the “actual” work to quantum simu-
lators like ReferenceWavefunctionSimulator, ReferenceDensitySimulator, and NumpyWavefunctionSimulator

Parameters

• n_qubits – The number of qubits. Typically this results in the allocation of a large ndar-
ray, so be judicious.

• quantum_simulator_type (Optional[Type[AbstractQuantumSimulator]])
– A class that can be instantiated to handle the quantum aspects of this QVM. If
not specified, the default will be either NumpyWavefunctionSimulator (no noise) or
ReferenceDensitySimulator (noise)

• post_gate_noise_probabilities (Optional[Dict[str, float]]) – A spec-
ification of noise model given by probabilities of certain types of noise. The dictionary
keys are from “relaxation”, “dephasing”, “depolarizing”, “phase_flip”, “bit_flip”, and “bit-
phase_flip”. WARNING: experimental. This interface will likely change.

• seed – An optional random seed for performing stochastic aspects of the QVM.

1.21 Devices

An appropriate Device is automatically created when using get_qc() and it is stored on the QuantumComputer
object as the device attribute.

There are properties of real quantum computers that go beyond the quantum abstract machine (QAM) abstraction. Real
devices have performance specs, limited ISAs, and restricted topologies. AbstractDevice provides an abstract
interface for accessing properties of a real quantum device or for mocking out relevant properties for a more realistic
QVM.

AbstractDevice
Device(name, raw) A device (quantum chip) that can accept programs.
NxDevice(topology) A shim over the AbstractDevice API backed by a Net-

workX graph.

1.21.1 pyquil.device.AbstractDevice

class pyquil.device.AbstractDevice

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods
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get_isa([oneq_type, twoq_type]) Construct an ISA suitable for targeting by compila-
tion.

get_specs() Construct a Specs object required by compilation
qubit_topology() The connectivity of qubits in this device given as a

NetworkX graph.
qubits() A sorted list of qubits in the device topology.

1.21.2 pyquil.device.Device

class pyquil.device.Device(name, raw)
A device (quantum chip) that can accept programs.

Only devices that are online will actively be accepting new programs. In addition to the self._raw attribute,
two other attributes are optionally constructed from the entries in self._raw – isa and noise_model
– which should conform to the dictionary format required by the .from_dict() methods for ISA and
NoiseModel, respectively.

Variables

• _raw (dict) – Raw JSON response from the server with additional information about the
device.

• isa (ISA) – The instruction set architecture (ISA) for the device.

• noise_model (NoiseModel) – The noise model for the device.

Parameters

• name – name of the device

• raw – raw JSON response from the server with additional information about this device.

__init__(name, raw)

Parameters

• name – name of the device

• raw – raw JSON response from the server with additional information about this device.

Methods

__init__(name, raw)
param name name of the device

get_isa([oneq_type, twoq_type]) Construct an ISA suitable for targeting by compila-
tion.

get_specs() Construct a Specs object required by compilation
qubit_topology() The connectivity of qubits in this device given as a

NetworkX graph.
qubits() A sorted list of qubits in the device topology.

Attributes
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isa

1.21.3 pyquil.device.NxDevice

class pyquil.device.NxDevice(topology)
A shim over the AbstractDevice API backed by a NetworkX graph.

A Device holds information about the physical device. Specifically, you might want to know about connec-
tivity, available gates, performance specs, and more. This class implements the AbstractDevice API for devices
not available via get_devices(). Instead, the user is responsible for constructing a NetworkX graph which
represents a chip topology.

__init__(topology)
Initialize self. See help(type(self)) for accurate signature.

Return type None

Methods

__init__(topology) Initialize self.
edges()

rtype List[Tuple[int, int]]

get_isa([oneq_type, twoq_type]) Construct an ISA suitable for targeting by compila-
tion.

get_specs() Construct a Specs object required by compilation
qubit_topology() The connectivity of qubits in this device given as a

NetworkX graph.
qubits() A sorted list of qubits in the device topology.

The data structures used are documented here

ISA Basic Instruction Set Architecture specification.
Specs Basic specifications for the device, such as gate fidelities

and coherence times.

1.21.4 pyquil.device.ISA

class pyquil.device.ISA
Basic Instruction Set Architecture specification.

Variables

• qubits (Sequence[Qubit]) – The qubits associated with the ISA.

• edges (Sequence[Edge]) – The multi-qubit gates.

Create new instance of _ISA(qubits, edges)

__init__()
Initialize self. See help(type(self)) for accurate signature.
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Methods

count(value)
from_dict(d) Re-create the ISA from a dictionary representation.
index(value, [start, [stop]]) Raises ValueError if the value is not present.
to_dict() Create a JSON-serializable representation of the

ISA.

Attributes

edges Alias for field number 1
qubits Alias for field number 0

1.21.5 pyquil.device.Specs

class pyquil.device.Specs
Basic specifications for the device, such as gate fidelities and coherence times.

Variables

• qubits_specs (List[QubitSpecs]) – The specs associated with individual qubits.

• edges_specs (List[EdgesSpecs]) – The specs associated with edges, or qubit-qubit
pairs.

Create new instance of _Specs(qubits_specs, edges_specs)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

T1s() Get a dictionary of T1s (in seconds) from the specs,
keyed by qubit index.

T2s() Get a dictionary of T2s (in seconds) from the specs,
keyed by qubit index.

count(value)
f1QRBs() Get a dictionary of single-qubit randomized bench-

marking fidelities (normalized to unity) from the
specs, keyed by qubit index.

fActiveResets() Get a dictionary of single-qubit active reset fidelities
(normalized to unity) from the specs, keyed by qubit
index.

fBellStates() Get a dictionary of two-qubit Bell state fidelities
(normalized to unity) from the specs, keyed by tar-
gets (qubit-qubit pairs).

fCPHASEs() Get a dictionary of CPHASE fidelities (normalized
to unity) from the specs, keyed by targets (qubit-
qubit pairs).

Continued on next page
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Table 28 – continued from previous page
fCZ_std_errs() Get a dictionary of the standard errors of the CZ fi-

delities from the specs, keyed by targets (qubit-qubit
pairs).

fCZs() Get a dictionary of CZ fidelities (normalized to
unity) from the specs, keyed by targets (qubit-qubit
pairs).

fROs() Get a dictionary of single-qubit readout fidelities
(normalized to unity) from the specs, keyed by qubit
index.

from_dict(d) Re-create the Specs from a dictionary representation.
index(value, [start, [stop]]) Raises ValueError if the value is not present.
to_dict() Create a JSON-serializable representation of the de-

vice Specs.

Attributes

edges_specs Alias for field number 1
qubits_specs Alias for field number 0

1.21.6 Utility functions

pyquil.device.isa_from_graph(graph, oneq_type=’Xhalves’, twoq_type=’CZ’)
Generate an ISA object from a NetworkX graph.

Parameters

• graph (Graph) – The graph

• oneq_type – The type of 1-qubit gate. Currently ‘Xhalves’

• twoq_type – The type of 2-qubit gate. One of ‘CZ’ or ‘CPHASE’.

Return type ISA

pyquil.device.specs_from_graph(graph)
Generate a Specs object from a NetworkX graph with placeholder values for the actual specs.

Parameters graph (Graph) – The graph

pyquil.device.isa_to_graph(isa)
Construct a NetworkX qubit topology from an ISA object.

This discards information about supported gates.

Parameters isa (ISA) – The ISA.

Return type Graph

pyquil.device.gates_in_isa(isa)
Generate the full gateset associated with an ISA.

Parameters isa (ISA) – The instruction set architecture for a QPU.

Returns A sequence of Gate objects encapsulating all gates compatible with the ISA.

Return type Sequence[Gate]
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1.22 Simulators

QVMs promise to behave like a real QPU. However, under-the-hood there is usually a simulation that has fewer
constraints than a physical device. For example, in a wavefunction (or statevector) simulation, you can directly inspect
amplitudes and probabilities.

WavefunctionSimulator([connection, ran-
dom_seed])

A simulator that propagates a wavefunction representa-
tion of a quantum state.

ReferenceWavefunctionSimulator(n_qubits[,
rs])

A wavefunction simulator that prioritizes readability
over performance.

ReferenceDensitySimulator(n_qubits[, rs]) A density matrix simulator that prioritizes readability
over performance.

NumpyWavefunctionSimulator(n_qubits[, rs]) A wavefunction simulator that uses numpy’s tensordot
or einsum to update a state vector

1.22.1 WavefunctionSimulator

class pyquil.api.WavefunctionSimulator(connection=None, random_seed=None)
A simulator that propagates a wavefunction representation of a quantum state.

Parameters

• connection (Optional[ForestConnection]) – A connection to the Forest web
API.

• random_seed (Optional[int]) – A seed for the simulator’s random number genera-
tors. Either None (for an automatically generated seed) or a non-negative integer.

1.22.2 ReferenceWavefunctionSimulator

class pyquil.reference_simulator.ReferenceWavefunctionSimulator(n_qubits,
rs=None)

A wavefunction simulator that prioritizes readability over performance.

Please consider using PyQVM(..., wf_simulator_type=ReferenceWavefunctionSimulator)
rather than using this class directly.

This class uses a flat state-vector of length 2^n_qubits to store wavefunction amplitudes. The basis is taken to be
bitstrings ordered lexicographically with qubit 0 as the rightmost bit. This is the same as the Rigetti Lisp QVM.

Parameters

• n_qubits (int) – Number of qubits to simulate.

• rs (Optional[RandomState]) – a RandomState (should be shared with the owning
PyQVM) for doing anything stochastic. A value of None disallows doing anything stochas-
tic.

1.22.3 ReferenceDensitySimulator

class pyquil.reference_simulator.ReferenceDensitySimulator(n_qubits, rs=None)
A density matrix simulator that prioritizes readability over performance.

Please consider using PyQVM(..., wf_simulator_type=ReferenceDensitySimulator) rather
than using this class directly.
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This class uses a dense matrix of shape (2^n_qubits, 2^n_qubits) to store the density matrix.

Parameters

• n_qubits (int) – Number of qubits to simulate.

• rs (Optional[RandomState]) – a RandomState (should be shared with the owning
PyQVM) for doing anything stochastic. A value of None disallows doing anything stochas-
tic.

1.22.4 NumpyWavefunctionSimulator

class pyquil.numpy_simulator.NumpyWavefunctionSimulator(n_qubits, rs=None)
A wavefunction simulator that uses numpy’s tensordot or einsum to update a state vector

Please consider using PyQVM(..., quantum_simulator_type=NumpyWavefunctionSimulator)
rather than using this class directly.

This class uses a n_qubit-dim ndarray to store wavefunction amplitudes. The array is indexed into with a tuple
of n_qubits 1’s and 0’s, with qubit 0 as the leftmost bit. This is the opposite convention of the Rigetti Lisp QVM.

Parameters

• n_qubits – Number of qubits to simulate.

• rs (Optional[RandomState]) – a RandomState (should be shared with the owning
PyQVM) for doing anything stochastic. A value of None disallows doing anything stochas-
tic.

1.22.5 Reference Utilities

lifted_pauli(pauli_sum, qubits) Takes a PauliSum object along with a list of qubits and
returns a matrix corresponding the tensor representation
of the object.

lifted_gate(gate, n_qubits) Lift a pyquil Gate in a full n_qubits-qubit Hilbert
space.

program_unitary(program, n_qubits) Return the unitary of a pyQuil program.
all_bitstrings(n_bits) All bitstrings in lexicographical order as a 2d

np.ndarray.

lifted_pauli

pyquil.unitary_tools.lifted_pauli(pauli_sum, qubits)
Takes a PauliSum object along with a list of qubits and returns a matrix corresponding the tensor representation
of the object.

Useful for generating the full Hamiltonian after a particular fermion to pauli transformation. For example:

Converting a PauliSum X0Y1 + Y1X0 into the matrix

[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.-2.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+2.j, 0.+0.j, 0.+0.j, 0.+0.j]]

Developer note: Quil and the QVM like qubits to be ordered such that qubit 0 is on the right. Therefore,
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in qubit_adjacent_lifted_gate, lifted_pauli, and lifted_state_operator, we build up
the lifted matrix by performing the kronecker product from right to left.

Parameters

• pauli_sum (Union[PauliSum, PauliTerm]) – Pauli representation of an operator

• qubits (List[int]) – list of qubits in the order they will be represented in the resultant
matrix.

Returns matrix representation of the pauli_sum operator

lifted_gate

pyquil.unitary_tools.lifted_gate(gate, n_qubits)
Lift a pyquil Gate in a full n_qubits-qubit Hilbert space.

This function looks up the matrix form of the gate and then dispatches to lifted_gate_matrix() with the
target qubits.

Parameters

• gate (Gate) – A gate

• n_qubits (int) – The total number of qubits.

Returns A 2^n by 2^n lifted version of the gate acting on its specified qubits.

program_unitary

pyquil.unitary_tools.program_unitary(program, n_qubits)
Return the unitary of a pyQuil program.

Parameters program – A program consisting only of Gate.:

Returns a unitary corresponding to the composition of the program’s gates.

all_bitstrings

pyquil.unitary_tools.all_bitstrings(n_bits)
All bitstrings in lexicographical order as a 2d np.ndarray.

This should be the same as np.array(list(itertools.product([0,1], repeat=n_bits)))
but faster.

1.22.6 Numpy Utilities

targeted_einsum(gate, wf, wf_target_inds) Left-multiplies the given axes of the wf tensor by the
given gate matrix.

targeted_tensordot(gate, wf, wf_target_inds) Left-multiplies the given axes of the wf tensor by the
given gate matrix.

targeted_einsum

pyquil.numpy_simulator.targeted_einsum(gate, wf, wf_target_inds)
Left-multiplies the given axes of the wf tensor by the given gate matrix.
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Note that the matrix must have a compatible tensor structure. For example, if you have an 6-qubit state vector
wf with shape (2, 2, 2, 2, 2, 2), and a 2-qubit unitary operation op with shape (2, 2, 2, 2), and you want to apply
op to the 5th and 3rd qubits within input_state, then the output state vector is computed as follows:

output_state = targeted_einsum(op, input_state, [5, 3])

This method also works when the right hand side is a matrix instead of a vector. If a unitary circuit’s matrix is
old_effect, and you append a CNOT(q1, q4) operation onto the circuit, where the control q1 is the qubit
at offset 1 and the target q4 is the qubit at offset 4, then the appended circuit’s unitary matrix is computed as
follows:

new_effect = targeted_left_multiply(CNOT.reshape((2, 2, 2, 2)), old_effect, [1,
→˓4])

Parameters

• gate (ndarray) – What to left-multiply the target tensor by.

• wf (ndarray) – A tensor to carefully broadcast a left-multiply over.

• wf_target_inds (List[int]) – Which axes of the target are being operated on.

Return type ndarray

Returns The output tensor.

targeted_tensordot

pyquil.numpy_simulator.targeted_tensordot(gate, wf, wf_target_inds)
Left-multiplies the given axes of the wf tensor by the given gate matrix.

Compare with targeted_einsum(). The semantics of these two functions should be identical, except this
uses np.tensordot instead of np.einsum.

Parameters

• gate (ndarray) – What to left-multiply the target tensor by.

• wf (ndarray) – A tensor to carefully broadcast a left-multiply over.

• wf_target_inds (Sequence[int]) – Which axes of the target are being operated on.

Return type ndarray

Returns The output tensor.

1.23 Noise Models

1.23.1 Functions

append_kraus_to_gate(kraus_ops, gate_matrix) Follow a gate gate_matrix by a Kraus map de-
scribed by kraus_ops.

pauli_kraus_map(probabilities) Generate the Kraus operators corresponding to a pauli
channel.

damping_kraus_map([p]) Generate the Kraus operators corresponding to an am-
plitude damping noise channel.

Continued on next page
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Table 33 – continued from previous page
dephasing_kraus_map([p]) Generate the Kraus operators corresponding to a de-

phasing channel.
tensor_kraus_maps(k1, k2) Generate the Kraus map corresponding to the composi-

tion of two maps on different qubits.
combine_kraus_maps(k1, k2) Generate the Kraus map corresponding to the compo-

sition of two maps on the same qubits with k1 being
applied to the state after k2.

damping_after_dephasing(T1, T2, gate_time) Generate the Kraus map corresponding to the composi-
tion of a dephasing channel followed by an amplitude
damping channel.

get_noisy_gate(gate_name, params) Look up the numerical gate representation and a pro-
posed ‘noisy’ name.

_decoherence_noise_model(gates[, T1, T2,
. . . ])

The default noise parameters

decoherence_noise_with_asymmetric_ro(gates)Similar to _decoherence_noise_model(), but
with asymmetric readout.

apply_noise_model(prog, noise_model) Apply a noise model to a program and generated a
‘noisy-fied’ version of the program.

add_decoherence_noise(prog[, T1, T2, . . . ]) Add generic damping and dephasing noise to a program.
estimate_bitstring_probs(results) Given an array of single shot results estimate the proba-

bility distribution over all bitstrings.
corrupt_bitstring_probs(p, . . . ) Given a 2d array of true bitstring probabilities (outer

axis iterates over shots, inner axis over bits) and a list
of assignment probability matrices (one for each bit in
the readout, ordered like the inner axis of results) com-
pute the corrupted probabilities.

bitstring_probs_to_z_moments(p) Convert between bitstring probabilities and joint Z mo-
ment expectations.

estimate_assignment_probs(q, trials, cxn[,
p0])

Estimate the readout assignment probabilities for a
given qubit q.

append_kraus_to_gate

pyquil.noise.append_kraus_to_gate(kraus_ops, gate_matrix)
Follow a gate gate_matrix by a Kraus map described by kraus_ops.

Parameters

• kraus_ops (list) – The Kraus operators.

• gate_matrix (numpy.ndarray) – The unitary gate.

Returns A list of transformed Kraus operators.

pauli_kraus_map

pyquil.noise.pauli_kraus_map(probabilities)
Generate the Kraus operators corresponding to a pauli channel.

Params list|floats probabilities The 4^num_qubits list of probabilities specifying the desired pauli
channel.

There should be either 4 or 16 probabilities specified in the order I, X, Y, Z for 1 qubit or II, IX, IY, IZ, XI, XX,
XY, etc for 2 qubits.
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For example:

The d-dimensional depolarizing channel \Delta parameterized as
\Delta(\rho) = p \rho + [(1-p)/d] I
is specified by the list of probabilities
[p + (1-p)/d, (1-p)/d, (1-p)/d), ... , (1-p)/d)]

Returns A list of the 4^num_qubits Kraus operators that parametrize the map.

Return type list

damping_kraus_map

pyquil.noise.damping_kraus_map(p=0.1)
Generate the Kraus operators corresponding to an amplitude damping noise channel.

Parameters p (float) – The one-step damping probability.

Returns A list [k1, k2] of the Kraus operators that parametrize the map.

Return type list

dephasing_kraus_map

pyquil.noise.dephasing_kraus_map(p=0.1)
Generate the Kraus operators corresponding to a dephasing channel.

Params float p The one-step dephasing probability.

Returns A list [k1, k2] of the Kraus operators that parametrize the map.

Return type list

tensor_kraus_maps

pyquil.noise.tensor_kraus_maps(k1, k2)
Generate the Kraus map corresponding to the composition of two maps on different qubits.

Parameters

• k1 (list) – The Kraus operators for the first qubit.

• k2 (list) – The Kraus operators for the second qubit.

Returns A list of tensored Kraus operators.

combine_kraus_maps

pyquil.noise.combine_kraus_maps(k1, k2)
Generate the Kraus map corresponding to the composition of two maps on the same qubits with k1 being applied
to the state after k2.

Parameters

• k1 (list) – The list of Kraus operators that are applied second.

• k2 (list) – The list of Kraus operators that are applied first.

Returns A combinatorially generated list of composed Kraus operators.
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damping_after_dephasing

pyquil.noise.damping_after_dephasing(T1, T2, gate_time)
Generate the Kraus map corresponding to the composition of a dephasing channel followed by an amplitude
damping channel.

Parameters

• T1 (float) – The amplitude damping time

• T2 (float) – The dephasing time

• gate_time (float) – The gate duration.

Returns A list of Kraus operators.

get_noisy_gate

pyquil.noise.get_noisy_gate(gate_name, params)
Look up the numerical gate representation and a proposed ‘noisy’ name.

Parameters

• gate_name (str) – The Quil gate name

• params (Tuple[float]) – The gate parameters.

Returns A tuple (matrix, noisy_name) with the representation of the ideal gate matrix and a pro-
posed name for the noisy version.

Return type Tuple[np.array, str]

_decoherence_noise_model

pyquil.noise._decoherence_noise_model(gates, T1=3e-05, T2=3e-05, gate_time_1q=5e-08,
gate_time_2q=1.5e-07, ro_fidelity=0.95)

The default noise parameters

• T1 = 30 us

• T2 = 30 us

• 1q gate time = 50 ns

• 2q gate time = 150 ns

are currently typical for near-term devices.

This function will define new gates and add Kraus noise to these gates. It will translate the input program to use
the noisy version of the gates.

Parameters

• gates (Sequence[Gate]) – The gates to provide the noise model for.

• T1 (Union[Dict[int,float],float]) – The T1 amplitude damping time either
globally or in a dictionary indexed by qubit id. By default, this is 30 us.

• T2 (Union[Dict[int,float],float]) – The T2 dephasing time either globally or
in a dictionary indexed by qubit id. By default, this is also 30 us.

• gate_time_1q (float) – The duration of the one-qubit gates, namely RX(+pi/2) and
RX(-pi/2). By default, this is 50 ns.
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• gate_time_2q (float) – The duration of the two-qubit gates, namely CZ. By default,
this is 150 ns.

• ro_fidelity (Union[Dict[int,float],float]) – The readout assignment fi-
delity 𝐹 = (𝑝(0|0) + 𝑝(1|1))/2 either globally or in a dictionary indexed by qubit id.

Returns A NoiseModel with the appropriate Kraus operators defined.

decoherence_noise_with_asymmetric_ro

pyquil.noise.decoherence_noise_with_asymmetric_ro(gates, p00=0.975, p11=0.911)
Similar to _decoherence_noise_model(), but with asymmetric readout.

For simplicity, we use the default values for T1, T2, gate times, et al. and only allow the specification of readout
fidelities.

apply_noise_model

pyquil.noise.apply_noise_model(prog, noise_model)
Apply a noise model to a program and generated a ‘noisy-fied’ version of the program.

Parameters

• prog (Program) – A Quil Program object.

• noise_model (NoiseModel) – A NoiseModel, either generated from an ISA or from a
simple decoherence model.

Returns A new program translated to a noisy gateset and with noisy readout as described by the
noisemodel.

Return type Program

add_decoherence_noise

pyquil.noise.add_decoherence_noise(prog, T1=3e-05, T2=3e-05, gate_time_1q=5e-08,
gate_time_2q=1.5e-07, ro_fidelity=0.95)

Add generic damping and dephasing noise to a program.

This high-level function is provided as a convenience to investigate the effects of a generic noise model on a
program. For more fine-grained control, please investigate the other methods available in the pyquil.noise
module.

In an attempt to closely model the QPU, noisy versions of RX(+-pi/2) and CZ are provided; I and parametric
RZ are noiseless, and other gates are not allowed. To use this function, you need to compile your program to
this native gate set.

The default noise parameters

• T1 = 30 us

• T2 = 30 us

• 1q gate time = 50 ns

• 2q gate time = 150 ns

are currently typical for near-term devices.

This function will define new gates and add Kraus noise to these gates. It will translate the input program to use
the noisy version of the gates.
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Parameters

• prog – A pyquil program consisting of I, RZ, CZ, and RX(+-pi/2) instructions

• T1 (Union[Dict[int,float],float]) – The T1 amplitude damping time either
globally or in a dictionary indexed by qubit id. By default, this is 30 us.

• T2 (Union[Dict[int,float],float]) – The T2 dephasing time either globally or
in a dictionary indexed by qubit id. By default, this is also 30 us.

• gate_time_1q (float) – The duration of the one-qubit gates, namely RX(+pi/2) and
RX(-pi/2). By default, this is 50 ns.

• gate_time_2q (float) – The duration of the two-qubit gates, namely CZ. By default,
this is 150 ns.

• ro_fidelity (Union[Dict[int,float],float]) – The readout assignment fi-
delity 𝐹 = (𝑝(0|0) + 𝑝(1|1))/2 either globally or in a dictionary indexed by qubit id.

Returns A new program with noisy operators.

estimate_bitstring_probs

pyquil.noise.estimate_bitstring_probs(results)
Given an array of single shot results estimate the probability distribution over all bitstrings.

Parameters results (np.array) – A 2d array where the outer axis iterates over shots and the
inner axis over bits.

Returns An array with as many axes as there are qubit and normalized such that it sums to one.
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

Return type np.array

corrupt_bitstring_probs

pyquil.noise.corrupt_bitstring_probs(p, assignment_probabilities)
Given a 2d array of true bitstring probabilities (outer axis iterates over shots, inner axis over bits) and a list of
assignment probability matrices (one for each bit in the readout, ordered like the inner axis of results) compute
the corrupted probabilities.

Parameters

• p (np.array) – An array that enumerates bitstring probabilities. When flattened out p
= [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

• assignment_probabilities (List[np.array]) – A list of assignment probabil-
ity matrices per qubit. Each assignment probability matrix is expected to be of the form:

[[p00 p01]
[p10 p11]]

Returns p_corrected an array with as many dimensions as there are qubits that contains the
noisy-readout-corrected estimated probabilities for each measured bitstring, i.e., p[i,j,...,
k] gives the estimated probability of bitstring ij...k.

Return type np.array

1.23. Noise Models 163

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


pyQuil Documentation, Release 2.6.0

bitstring_probs_to_z_moments

pyquil.noise.bitstring_probs_to_z_moments(p)
Convert between bitstring probabilities and joint Z moment expectations.

Parameters p (np.array) – An array that enumerates bitstring probabilities. When flattened out
p = [p_00...0, p_00...1, ...,p_11...1]. The total number of elements must
therefore be a power of 2. The canonical shape has a separate axis for each qubit, such that
p[i,j,...,k] gives the estimated probability of bitstring ij...k.

Returns

z_moments, an np.array with one length-2 axis per qubit which contains the expectations of
all monomials in {I, Z_0, Z_1, ..., Z_{n-1}}. The expectations of each monomial
can be accessed via:

<Z_0^j_0 Z_1^j_1 ... Z_m^j_m> = z_moments[j_0,j_1,...,j_m]

Return type np.array

estimate_assignment_probs

pyquil.noise.estimate_assignment_probs(q, trials, cxn, p0=None)
Estimate the readout assignment probabilities for a given qubit q. The returned matrix is of the form:

[[p00 p01]
[p10 p11]]

Parameters

• q (int) – The index of the qubit.

• trials (int) – The number of samples for each state preparation.

• cxn (Union[QVMConnection,QPUConnection]) – The quantum abstract machine
to sample from.

• p0 (Program) – A header program to prepend to the state preparation programs.

Returns The assignment probability matrix

Return type np.array

1.23.2 Classes

class pyquil.noise.NoiseModel
Encapsulate the QPU noise model containing information about the noisy gates.

Variables

• gates (Sequence[KrausModel]) – The tomographic estimates of all gates.

• assignment_probs (Dict[int,np.array]) – The single qubit readout assignment
probability matrices keyed by qubit id.

Create new instance of _NoiseModel(gates, assignment_probs)

164 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


pyQuil Documentation, Release 2.6.0

Methods

gates_by_name(name) Return all defined noisy gates of a particular gate
name.

to_dict() Create a JSON serializable representation of the
noise model.

from_dict(d) Re-create the noise model from a dictionary repre-
sentation.

NoiseModel.gates_by_name

NoiseModel.gates_by_name(name)
Return all defined noisy gates of a particular gate name.

Parameters name (str) – The gate name.

Returns A list of noise models representing that gate.

Return type Sequence[KrausModel]

NoiseModel.to_dict

NoiseModel.to_dict()
Create a JSON serializable representation of the noise model.

For example:

{
"gates": [

# list of embedded dictionary representations of KrausModels here [...
→˓]

]
"assignment_probs": {

"0": [[.8, .1],
[.2, .9]],

"1": [[.9, .4],
[.1, .6]],

}
}

Returns A dictionary representation of self.

Return type Dict[str,Any]

NoiseModel.from_dict

static NoiseModel.from_dict(d)
Re-create the noise model from a dictionary representation.

Parameters d (Dict[str,Any]) – The dictionary representation.

Returns The restored noise model.

Return type NoiseModel
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class pyquil.noise.KrausModel
Encapsulate a single gate’s noise model.

Variables

• gate (str) – The name of the gate.

• params (Sequence[float]) – Optional parameters for the gate.

• targets (Sequence[int]) – The target qubit ids.

• kraus_ops (Sequence[np.array]) – The Kraus operators (must be square complex
numpy arrays).

• fidelity (float) – The average gate fidelity associated with the Kraus map relative to
the ideal operation.

Create new instance of _KrausModel(gate, params, targets, kraus_ops, fidelity)

Methods

unpack_kraus_matrix(m) Helper to optionally unpack a JSON compatible rep-
resentation of a complex Kraus matrix.

unpack_kraus_matrix(m) Helper to optionally unpack a JSON compatible rep-
resentation of a complex Kraus matrix.

to_dict() Create a dictionary representation of a KrausModel.
from_dict(d) Recreate a KrausModel from the dictionary repre-

sentation.

KrausModel.unpack_kraus_matrix

static KrausModel.unpack_kraus_matrix(m)
Helper to optionally unpack a JSON compatible representation of a complex Kraus matrix.

Parameters m (Union[list,np.array]) – The representation of a Kraus operator. Either
a complex square matrix (as numpy array or nested lists) or a JSON-able pair of real matrices
(as nested lists) representing the element-wise real and imaginary part of m.

Returns A complex square numpy array representing the Kraus operator.

Return type np.array

KrausModel.to_dict

KrausModel.to_dict()
Create a dictionary representation of a KrausModel.

For example:

{
"gate": "RX",
"params": np.pi,
"targets": [0],
"kraus_ops": [ # In this example single Kraus op = ideal

→˓RX(pi) gate
[[[0, 0], # element-wise real part of matrix
[0, 0]],

(continues on next page)

166 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list


pyQuil Documentation, Release 2.6.0

(continued from previous page)

[[0, -1], # element-wise imaginary part of matrix
[-1, 0]]]

],
"fidelity": 1.0

}

Returns A JSON compatible dictionary representation.

Return type Dict[str,Any]

KrausModel.from_dict

static KrausModel.from_dict(d)
Recreate a KrausModel from the dictionary representation.

Parameters d (dict) – The dictionary representing the KrausModel. See to_dict for an exam-
ple.

Returns The deserialized KrausModel.

Return type KrausModel

1.24 Operator Estimation

1.24.1 Data structures

ExperimentSetting(in_state, out_operator) Input and output settings for a tomography-like experi-
ment.

TomographyExperiment(settings, program,
qubits)

A tomography-like experiment.

ExperimentResult(setting, expectation, . . . ) An expectation and standard deviation for the measure-
ment of one experiment setting in a tomographic exper-
iment.

ExperimentSetting

class pyquil.operator_estimation.ExperimentSetting(in_state, out_operator)
Input and output settings for a tomography-like experiment.

Many near-term quantum algorithms take the following form:

• Start in a pauli state

• Prepare some ansatz

• Measure it w.r.t. pauli operators

Where we typically use a large number of (start, measure) pairs but keep the ansatz preparation program consis-
tent. This class represents the (start, measure) pairs. Typically a large number of these ExperimentSetting
objects will be created and grouped into a TomographyExperiment.
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TomographyExperiment

class pyquil.operator_estimation.TomographyExperiment(settings, program, qubits)
A tomography-like experiment.

Many near-term quantum algorithms involve:

• some limited state preparation

• enacting a quantum process (like in tomography) or preparing a variational ansatz state (like in VQE)

• measuring observables of the state.

Where we typically use a large number of (state_prep, measure) pairs but keep the ansatz program consistent.
This class stores the ansatz program as a Program and maintains a list of ExperimentSetting objects
which each represent a (state_prep, measure) pair.

Settings diagonalized by a shared tensor product basis (TPB) can (optionally) be estimated simultaneously.
Therefore, this class is backed by a list of list of ExperimentSettings. Settings sharing an inner list will be
estimated simultaneously. If you don’t want this, provide a list of length-1-lists. As a convenience, if you pass
a 1D list to the constructor will expand it to a list of length-1-lists.

This class will not group settings for you. Please see group_experiments() for a function that will auto-
matically process a TomographyExperiment to group Experiments sharing a TPB.

ExperimentResult

class pyquil.operator_estimation.ExperimentResult(setting, expectation, stddev, to-
tal_counts, raw_expectation=None,
raw_stddev=None, calibra-
tion_expectation=None, cali-
bration_stddev=None, calibra-
tion_counts=None)

An expectation and standard deviation for the measurement of one experiment setting in a tomographic experi-
ment.

In the case of readout error calibration, we also include expectation, standard deviation and count for the cali-
bration results, as well as the expectation and standard deviation for the corrected results.

1.24.2 Methods

group_experiments(experiments[, method]) Group experiments that are diagonal in a shared tensor
product basis (TPB) to minimize number of QPU runs.

measure_observables(qc, tomo_experiment[,
. . . ])

Measure all the observables in a TomographyExperi-
ment.

group_experiments

pyquil.operator_estimation.group_experiments(experiments, method=’greedy’)
Group experiments that are diagonal in a shared tensor product basis (TPB) to minimize number of QPU runs.

Given some PauliTerm operator, the ‘natural’ tensor product basis to diagonalize this term is the one which
diagonalizes each Pauli operator in the product term-by-term.

For example, X(1) * Z(0) would be diagonal in the ‘natural’ tensor product basis {(|0> +/- |1>)/Sqrt[2]} * {|0>,
|1>}, whereas Z(1) * X(0) would be diagonal in the ‘natural’ tpb {|0>, |1>} * {(|0> +/- |1>)/Sqrt[2]}. The two
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operators commute but are not diagonal in each others ‘natural’ tpb (in fact, they are anti-diagonal in each others
‘natural’ tpb). This function tests whether two operators given as PauliTerms are both diagonal in each others
‘natural’ tpb.

Note that for the given example of X(1) * Z(0) and Z(1) * X(0), we can construct the following basis which
simultaneously diagonalizes both operators:

– |0>’ = |0> (|+>) + |1> (|->) – |1>’ = |0> (|+>) - |1> (|->) – |2>’ = |0> (|->) + |1> (|+>) – |3>’ = |0>
(-|->) + |1> (|+>)

In this basis, X Z looks like diag(1, -1, 1, -1), and Z X looks like diag(1, 1, -1, -1). Notice however that this
basis cannot be constructed with single-qubit operations, as each of the basis vectors are entangled states.

The “greedy” method will keep a running set of ‘buckets’ into which grouped ExperimentSettings will be placed.
Each new ExperimentSetting considered is assigned to the first applicable bucket and a new bucket is created if
there are no applicable buckets.

The “clique-removal” method maps the term grouping problem onto Max Clique graph problem. This method
constructs a NetworkX graph where an edge exists between two settings that share an nTPB and then uses
networkx’s algorithm for clique removal. This method can give you marginally better groupings in certain
circumstances, but constructing the graph is pretty slow so “greedy” is the default.

Parameters

• experiments (TomographyExperiment) – a tomography experiment

• method (str) – method used for grouping; the allowed methods are one of [‘greedy’,
‘clique-removal’]

Return type TomographyExperiment

Returns a tomography experiment with all the same settings, just grouped according to shared TPBs.

measure_observables

pyquil.operator_estimation.measure_observables(qc, tomo_experiment, n_shots=10000,
progress_callback=None,
active_reset=False, read-
out_symmetrize=’exhaustive’,
calibrate_readout=’plus-eig’)

Measure all the observables in a TomographyExperiment.

Parameters

• qc (QuantumComputer) – A QuantumComputer which can run quantum programs

• tomo_experiment (TomographyExperiment) – A suite of tomographic observ-
ables to measure

• n_shots (int) – The number of shots to take per ExperimentSetting

• progress_callback – If not None, this function is called each time a group of settings
is run with arguments f(i, len(tomo_experiment) such that the progress is i /
len(tomo_experiment).

• active_reset – Whether to actively reset qubits instead of waiting several times the
coherence length for qubits to decay to |0> naturally. Setting this to True is much faster but
there is a ~1% error per qubit in the reset operation. Thermal noise from “traditional” reset
is not routinely characterized but is of the same order.

• readout_symmetrize (str) – Method used to symmetrize the readout errors, i.e. set
p(0|1) = p(1|0). For uncorrelated readout errors, this can be achieved by randomly selecting
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between the POVMs {X.D1.X, X.D0.X} and {D0, D1} (where both D0 and D1 are diago-
nal). However, here we currently support exhaustive symmetrization and loop through all
possible 2^n POVMs {X/I . POVM . X/I}^n, and obtain symmetrization more generally, i.e.
set p(00|00) = p(01|01) = .. = p(11|11), as well as p(00|01) = p(01|00) etc. If this is None,
no symmetrization is performed. The exhaustive method can be specified by setting this
variable to ‘exhaustive’ (default value). Set to None if no symmetrization is desired.

• calibrate_readout (str) – Method used to calibrate the readout results. Currently,
the only method supported is normalizing against the operator’s expectation value in its +1
eigenstate, which can be specified by setting this variable to ‘plus-eig’ (default value). The
preceding symmetrization and this step together yield a more accurate estimation of the
observable. Set to None if no calibration is desired.

1.24.3 Utilities

to_json(fn, obj) Convenience method to save
pyquil.operator_estimation objects as a JSON file.

read_json(fn) Convenience method to read pyquil.operator_estimation
objects from a JSON file.

to_json

pyquil.operator_estimation.to_json(fn, obj)
Convenience method to save pyquil.operator_estimation objects as a JSON file.

See read_json().

read_json

pyquil.operator_estimation.read_json(fn)
Convenience method to read pyquil.operator_estimation objects from a JSON file.

See to_json().
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